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Summary

Multiple antennas at both the transmitter and receiver is known as multiple-input multiple-
output (MIMO) system. This has emerged as the most promising technique for improving
the performance of wireless digital transmission systems as well as allowing higher data rates
to be obtained for a given bandwidth. A consequence of the MIMO wireless communications
revolution is that multipath scattering of the transmitted signal has moved from being a problem
to being a valuable resource. This has happened to such extent that MIMO systems have come
to rely on this resource. However, away from dense urban and indoor environments such as
Australian rural and remote areas with wide open spaces and flat or smooth undulating terrain
such rich scattering can be hard to find.

This research seeks to develop MIMO schemes which will give robust and reliable perfor-
mance in environments that can change rapidly from rich scattering environment to clear line
of sight between transmitter and receiver. Wireless communications system which are robust to
changing environment conditions arc a particular important factor in military communication
systems as well as for civilian emergency services. In this work, polarization is proposed as
a source of diversity in wireless communications. Polarization diversity is particularly suited
to the Australian rural and remote cnvironment where wide open spaces and flat or smooth
undulating terrain give rise to line of sight conditions between the transmitter and the receiver.
The polarization diversity of transmitted signals is mostly preserved by the line-of-sight envi-
ronment, presenting an opportunity for transmitter and receiver diversity techniques.

Another aspect of the research presented here is the development of fast, fixed complexity,
decoding algorithms for space-time codes that are robust to the changing transmission condi-
tions. Reliable high rate transmission over the MIMO system can only be achieved through
“space-time coding”. The major drawback of a number of potentially useful space-time codes
is the high computational complexity of the known decoding algorithms. This is particular true
for a number of codes which are best suited to the exploitation of polarization diversity. The ex-
isting ““fast” decoding algorithm for this decoding problem, the so-called sphere decoder, has
performancc which depends crucially on the channel conditions. When the channel is close
to singular, that is, when the channel between the base station and terminal is close to pure
line-of-sight, the sphere decoder defaults to an exhaustive search. If such conditions persist
the communication system could be in outage purely due to computational overload. In this
project we develop fast decoding algorithms which have fixed complexity across all channel
conditions. In particular, we present the fastest known fixed complexity decoding algorithm
for the Golden code, an important code used in the WiMax standard for fully mobile internet
access.
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Preface

The primary charactcristic of wireless communications is vanability. Any change in the posi-
tion of the transmitter or receiver, or in fact, of any objcct in the vicinity of the wireless system
can cause the quality of the transmission to change. This effect is referred to as fading. Fad-
ing is caused by the transmitted signal making its way to the receiver via multiple paths, and
thesc multipath components can then destructively interfere to significantly reducc the reccived
power. Another important charactcristic of wircless communications is that users must share a
common resource, handwidth.

Consideration of these problems and limitations led to the development of multiple-input
multiple-output (MIMO) wireless communication systems in the mid 1990s and this tcchnique
has emergcd as the most promising technique for improving the performance of wireless dig-
ital transmission systems {1, 2]. This improvement is two-fold. First, the limited resources of
a wireless communication system, such as spectrum and power, can be efficiently used with
multiple antennas to provide good quality and large capacity to a wide range of applications
requiring high data rates. In short, MIMO techniques allow higher data rates to be obtained
for a given bandwidth. The sccond advantage obtaincd through the usc of MIMO systems is
robustness to fading caused by multipath propagation of the radio transmissions. As a conse-
quence of these benefits, MIMO has gone through the adoption curve for commercial wireless
systems to the point that today (2009), all high throughput commercial standards (i.e. WiMax,
Wi-Fi ctc.) have adopted MIMO as part of the optional, if not mandatory, portions of their
standards [3].

A consequence of the MIMO wireless communications revolution is that multipath scatter-
ing of the transmitted signal has moved from being a problem to being a valuable resource.
This has happened to such an cxtent that MIMO systems have come to rely on this resource.
However, away from dense urban and indoor environments, for example, in Australian rural
and remote areas with wide open spaccs and flat or smooth undulating terrain such rich scat-
tering can be hard to find.

The research reported in this work sceks to develop MIMO schemes which will give robust
and reliable performance in environments that can change rapidly from a rich scattcring en-
vironment to clcar line of sight between transmitter and recciver. Wireless communications
systcms which arc robust to changing cnvironmental conditions arc a particularly important
factor in military communication systcms as well as for civilian emergcncy services.

Cecntral to this rescarch program is the introduction of a new degree of freedom at the phys-
ical layer of the wircless network, called polarization. The polarization of the electromagnetic
wave carrying the information from the transmitter to the receiver is defined by the orientation
of the electric field vector in the plane perpendicular to the direction of propagation. Tradition-
ally, wireless communication systcms have uscd a singlc transmit antenna and a single receive
antenna with linear vertical polarization. Linear horizontal and circular polarization are also
possible and have found application in wireless point-to-point (e.g. IEEE 802.11 WiFi) and
satellite communication systems respectively. By introducing either dual-polarized antennas
and/or multiple antennas with differcnt polarization, the dimension of polarization is added to
those of time, frequency and space for wireless transmission at the physical layer [4].

Some existing wireless systems (e.g. many WiFi access points) exploit polarization in an
implicit way. These implicit techniques are analogous to traditional selection diversity [4].
The signal is launched with a single polarization, the propagation medium then couples some
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energy into the cross-polarization plane, and the signal is received with a cross-polarized an-
tenna [5). Exploitation of implicit polarization diversity is suited to rich scattering (e.g. dense
urhan and indoor) environments [6]. In this work, polarization is proposed as a source of ex-
plicit diversity in wireless communications. Explicit polarization diversity is particularly suited
to the Australian rural and remote environment where wide open spaccs and flat or smooth un-
dulating terrain give rise to line of sight (LOS) conditions betwecn the transmitter and the
receiver. The polarization diversities of transmitted signals are mostly preserved by the LOS
environment. presenting an opportunity for transmitter diversity as well as receiver diversity
techniques.

Another aspect of the research reported here is to develop fast, fixed complexity, decod-
ing algorithms for space-time codcs that are robust to the changing environment. The major
drawback of spacc-timc codes is the high complexity of their decoding algorithms. This is
particularly truc for a numher of codes which are best suited to the exploitation of polarization
diversity. The existing “fast” dccoding algorithm for this problem, the so-called sphere de-
coder, has performance which depends crucially on the channel conditions. When the channel
is close to singular, that is, when the channcl betwcen the hase station and terminal is close to
pure line of sight, the sphere dccoder defaults to an exhaustive search. If such conditions per-
sist the communication system could be in outage purely due to computational overload. The
fast decoding algorithms developed here have fixed complexity across all channel conditions.

The report is essentially divided into three parts. The first part, Chapters 1 and 2, give the
necessary background on MIMO communications and space-time block codes and goes on to
develop some new techniques which we later use to analyse polarimetric MIMO schemes.

The second part consists of Chapters 3 and 4. It reports on our devclopment of fast dc-
coding algorithms for space-time codes. We develop fast decoding algorithms for a number
of important spacc-time codes, that have fixed complexity across channel conditions. Our
fast decoding algorithms are based on a technique called conditional optimization, which is
widely used in statistical estimation and signal processing to reduce the scarch space of an
optimization prohlem by taking advantage of thc possibility of analytically optimizing over
some subset of the parameters, conditioned on the remaining paramcters. This techniquc has
hardly hecn cxploited in discrete optimization problems associated with dccoding in wircless
communications. We show how to apply this method to a large class of full-ratc, full-diversity
space-time block codes, which includes multiplexed orthogonal designs, to give fast maximum
likelihood (ML) detection with low computational complexity. The techniquc is also applicd to
the Golden Code and perfect space-time hlock codcs, in an approximate form, to obtain essen-
tially maximum likelihood performance with greatly reduced complexity. Chapter 4 analyses,
in a general way, the structure of space-time codes that allow fast maximum likelihood decod-
ing. We show that the perfect space-time codes of Oggier et al. [7] are in fact, multiplexed
quasi-orthogonal designs and so have fast, fixed complexity, exact ML decoding algorithms.

The third part of this report explores the benefit of polarization diversity for MIMO sys-
tems. In Chapter 2 we analyse interference cancellation for multiple Alamouti schemes using
a Bayesian approach which providcs a unificd framework with which to understand the rela-
tionship between various signal detection techniques. The approach leads to a new paramcter
which can be used to predict the performance of systems hased on Alamouti coding, with-
out needing to resort to simulations. This parameter is used to analyse various transmission
schemes involving polarization diversity in Chapter 5. We show that a certain scheme which
multiplexes space-time codces across polarization gives significant henefits in stability of per-
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formance tor the MIMO system in the presence of even a small LOS component. In particular,
this scheme is shown to give inherent stability with respect to the relative orientation of a pair
of spatially separated dual polarized transmit antenna. This provides an impontant indication
of how polarization can be used to develop more robust and reliable wireless communication
systems. We go on to investigate systems using dual polarized transmit and dual polarized
reccive antenna in various conditions from pure LOS, Ricean and pure scattering. It is shown
that the performance of the Golden Code can be made stable across propagation conditions by
the usc of dual polarized transmit and dual polarized rcceive antennas. However, this is true
only if the transmitter and/or receiver arc fixed in position or are allowed to rotate in a plane of
alignment.

In mobile communications, the transmitter and/or receiver rotate with respect to each other,
throwing the dual polarimetric antennas out of alignment and degrading the performance sig-
nificantly. To improve the stability in transmission and/or reception under the rotation of the
transmitter and/or receiver, we investigate the use of a triad antenna at the transmitter and the
receiver in Chapter 6. We analytically show that the capacity of a system using triad antennas
is preserved undcr the relative rotation of the transmitter and receiver. This is not the casc for
the dual polarized system. We introduce a 3 x 3 space-time code suitable for the triad system
which gives full rate, through which the gains achicevable with triad antennas are demonstrated.
This code also has the advantage of being fast to decode due to our fast decoding algorithm,
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Chapter 1: MIMO Communications

1.1 Introduction

Recent advances in wireless communication systems have provided high speed, high through-
put over wireless channels, providing high quality information exchange between portable de-
vices located anywhere in the world. Wired communication has more stability, better perfor-
mance and higher reliability, but it greatly constrains the environments or locations in which
the system can be used. Wireless communication provides the benefits of portability, mobility
and accessibility. However, this represents both freedom to the end user and also a number of
challenges for the system designer [8].

Wireless communication is the transfer of information over a distance without the use of
electrical conductors or wires. Instead, the information rides on clectromagnetic waves, with
the consequence that the information undergoes attenuation (fading) due 1o the interaction of
the electromagnetic waves with the physical environment. The signal attenuation by wireless
propagation may be due to the distance between communicating nodes, referred to as path loss,
or due to shadowing from obstacles such as buildings, or due to constructive and destructive
interference of multiple reflections of the electromagnetic wave, referred to as multipath prop-
agation. Figure 1.1 illustrates a typical outdoor wireless propagation environment where the
mobile node is communicating with a wireless access point (base station). The signal trans-
mitted from the mobile may reach the base station directly (line of sight) or through multiple
reflections on local scatterers such as buildings, trees, hills etc. The received signal is a combi-
nation of multiple delayed copices of the transmitted signal. This multipath propagation makes
wireless a challenging communication environment.
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Figure 1.1: Radio propagation environment



Fortunately, this challcnge can be turned into an opportunity through the use of multiple
antennas. The multiple antennas may be in spatially separate locations and/or have different
polarizations (polarization diversity). Due to different local scattering environments, suffi-
ciently separated antenna elements provide almost independent fading channels. How much
separation is appropriate depends on the environment. In rural maero cells, many wavelengths
of separation may be required to de-correlate antennas, whcereas in indoor cnvironments a half
wavclength separation may be sufficient [9]. With sufficient spaeing, multiple antennas at
both ends of a wireless link ean be used to exploit the statistical independence of the multi-
ple channels connecting transmitter to rceeiver to increase spectral efficiency thought the uses
of spatial multiplexing. The existence of multiple independent channels can also be used to
improve link reliability through the use of transmit diversity techniques. A transmit diversity
technique which spreads the transmitted information across the multiple independent paths,
and which is particularly attractive becausc it does not require channel state information (CSI)
at the transmitter, is space-time coding [10].

1.2 Spatial Multiplexing

Spatial multiplexing (SM) is a technique which uses multiple antennas at both the transmitter
and receiver to increase the transmission rate by exploiting multipath. That is, it uses the
scattering characteristics of the propagation cnvironment to enhance the transmission rate by
treating the multiplicity of seattering paths as separate parallel sub-channels. Bell Labs was
the first to demonstrate a laboratory prototype in 1998, known as BLAST (Bell Labs Layered
Space-Time Architecture, sec Figure 1.2), where SM is the principal technique used to improve
the performancc of a wireless communication system. Bell Labs accomplished this by splitting
a single user’s data stream into multiple sub-strecams and using an array of transmittcr antennas
to simultancously launch the parallel sub-strcams. All the sub-streams are transmitted in the
same frequency band, so spectrum is used very efficiently. Since the user’s data is being sent in
parallel over multiple antennas, the effective transmission rate increases roughly linearly with
the number of antennas.
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Figure 1.2: MIMO system



At the receiver, if the multipath seattering is sufficient, i.e. the channel matrix has full rank,
then the reeeived signal at each receive antenna is a non-zero linear combination of indepen-
dent transmitted sub-streams. Using sophisticated signal proeessing, these slight differenees in
scattering allow the sub-streams to be separated and recovered. In its most basic form known
as vertical (V)-BLAST, the deteetion proeess uses a eombination of nulling and symbol can-
cellation to successively compute the decision statistics which are then used to form estimates
of the underlying data symbols.

Spatial multiplexing relies on the seattering richness in the propagation environment. The
lack of such conditions reduces the achievable rates of spatial multiplexing techniques from
their theoretieal projections under ideal assumptions [11, 12].

1.3 Space-Time Block Codes

Space-time bloek eodes (STBC) introdueed by Tarokh et al. [10], improve the reliability of
communication over fading channels by correlating signals across different transmit antennas.
The transmitted data stream is encoded in blocks which are distributed aeross space and time.
Consider a communieation system with 72, transmit and 7, receive antennas. Assume that
the transmitted symbols from the 72, transmit antennas at time slot £ is
a:g_(r,,r, Ty L<SH .n
where x; is the transmitted symbol from antenna i at time slot ¢, and all transmitted symbols
have the same duration. A n; x 71" space-time codeword matrix can be defined as

e B |
X=(x1.x2,...,27) = . . . . (1.2)

'1'," 1"2" - T
The i** row 2 = (x}, %, ..., x%) is the data sequence transmitted from the i*" transmit
antenna and the j'* column x; = (1], ]2 e "’) is the space-time symbol transmitted at

time 7,1 < 3 < T In a general form, an STBC ean be seen as a mapping of I' complex
symbols (xy,x2,...,27) onto a matrix X of dimension 1, x 1"

(1?|..’L'2....,.’Z'T)—>x (1‘3)

1.3.1 Diversity

Error probability on an additive white Gaussian noise (AWGN) channel decays exponentially
with SNR, and the challenge of communication over Rayleigh fading channels is that error
probability deeays only inversely with SNR. The received symbols y are given by

y=hX+n (1.4)

where X is the transmitted codeword, h is the vector of fading (or channel) coefficients, and w
is Gaussian noise. We assume a quasi-static model where the fading coeffieients are eonstant
over a frame and change independently from one frame to the next. If we normalize X so that



the average energy per complex symbol is 1 (SNR = 1/Np), then the probability of error given
perfeet channel state information is

o ~of X - X))l
Pr(X, x,|h)_Q( Wi ) (1.5)

and averaging over the channel statistics gives

. VSNRA(X, — X,)(X, — X,)th!

PrX: - X;)=FE 3 (1.6)
where
Q(z) = i /X exp (i) dy (1.7
; o= 5 : :
The matrix (X, — X;)(X: — X;)! is Hermitian, so there is a unitary matrix U for which
U(X: — X;)(Xi — X;) U = diag(A,- -+ ,A2)) (1.8)
where the cntries A; are the singular values of X; — X;. The change of basis h — Uh
preserves the Rayleigh distribution of h and if Ay, -- - , A,,, are nonzero, then
SNR/2)™™
Pr(X,- '*XJ)=(—/\?%. (]9)
ny

and the matrix X; — X is nonsingular and maximal diversity is achieved. We can associate
the following quantities with a space-time code:

o The diversity gain is the minimum of the rank of X, — X, over all codewords in the
code.

e The coding gain is the minimum value of the product of the non-zero singular values of
X,; — X, over all codewords.

There is a fundamental trade-off between using the multipath to improve throughput by mul-
tiplexing and improving reliability through using a space-time eode. This can be quantified
using the following definitions of diversity order and multiplexing rate.
A scheme which has an average error probability P.(SNR) as a funetion of SNR that
satisfies i )
y P.(SNR
S?\'IR”—I}X: log logSNR ~ (1.10)
is said to have a diversity order of d. In other words, a scheme with diversity order d has an
crror probability at high SNR that behaves as ﬁp(SNR) ~ SNR™¢,
A scheme which has a transmission rate of R(SNR) as a funetion of SNR is said to have a
multiplexing rate r if
log R(SNR) _
SNK Lo logSNR
In other words, the system has a rate of 7 log SNR at high SNR. There is a trade-off between
achievable diversity and multiplexing rate which is expressed in terms of the supremum d™(r)
of the diversity gain achievable by any scheme with multiplexing rate 7. The following theorem
is due to Zheng and Tsc [13],

(1.11)



Theorem 1 Let K = min(ng, n,) where 11, and 1, are the number of transmit and receive
antennas and suppose that the code block length N > ny + n, — 1. Then the optimal trade-
off curve d'(v) is given by the piecewise linear function connecting points in (k,d (k)),
k=20,---, K where

d"(k) = (ny - k) (nr = k). (1.12)

1t implies that high multiplexing rate comes at the pricc of dccreased diversity gain and high
diversity gain comes at the price of low multiplcxing rate.
We now give a description of some of the most important space-time codes.

1.3.2 Alamouti Code

The most famous space-time block code was discovered by Alamouti [14], and is described
by a 2 x 2 matrix where the columns represent different time slots, the rows represent dif-
ferent antennas, and the entries are the symbols to be transmitted. The Alamouti codeword is

rcprescnted as
Iy T2
X= <-z§ z;). (1.13)

The two rows (or columns) of X are orthogonal to each other,
XX = (|12 + |z2)?)1a. (1.14)
Thus, given two codcwords X and Y we see that
det(X -~ Y)(X - Y) = (&1 - n1]® + |22 — 12?)%. (1.15)

This means that a subcode of the Alamouti code corresponding to symbol pairs ¢, = (x,,,1,,) €
C%j=1,-,N, has

Diversity gain: 2

Coding gain: min; xe 1,y llz; — x4kl

At the receiver, the signals r1, ro received over two consecutive time slots are given by

<—1r;) = < :}; Zf) (=) + (n2) (1.16)

where hy, h2 are the path gains from the two transmit antennas to the recciver, and the noise
samples ny, n2 are independent samples of a zero-mcan complex Gaussian random variable
with variance 22 per complex dimension. Equation (1.16) can be represented as

r=Hz+n (1.17)

where the equivalent matrix channel (induced channcl) ‘H is orthogonal ic. HI'H = I,.
Throughout this work we consider the case of coherent detection i.e. the receiver is assumed
to have perfect knowlcdge of the Channel State Information (CSI). In practicc CS! can be
obtained by introducing some pilot transmissions that cnable accurate channel estimation. With
H known, the following processing can be done at the receiver

H'r = (|hi]? + h2)z + ' (1.18)

n



The new noise term n2” is still white, so the ML detection of 21, = is decoupled.

The Alamouti code provides full diversity at full transmission ratc for any real or eomplex
signal constellation, it does not require CSI at the transmitter, and the ML decoding requires
only linear complexity proeessing. For these reasons, the Alamouti code has been adopted
in several wireless standards such as WCDMA [15] and CDMA2000 [16). The Alamouti
eode also facilitates higher data rates through multiplexing of parallel data streams and the
addition of a second antenna at the receiver that performs interference cancellation. Data rates
of 4 bits/s/Hz havc been demonstrated for several wireless ehannels including UTMS, GSM,
EDGE, IEEE 802.11n and IEEE 802.16 [17]. This scheme is investigated in the next ehapter
with a view to extending its use to a polarization diverse MIMO systems.

1.3.3 Orthogonal Space-Time Block Codes

The Alamouti code is an example of an Orthiogonal Space-Time Block Code (OSTBC) for
two transmit antennas and its success provided an impctus for investigating thc cxistence of
OSTBCs for morc than two transmit antennas. OSTBCs are also referred to as orthogonal
designs (OD) and havc the property that ML decoding is linear. At the same timc these codes
achieve full diversity. In order to describe OSTBCs, first consider an STBC, written in the
form of a linear dispersion eode (LDC)[18] (note that LDC are diseussed in some detail in
Scction 4.1)

2T
X=ZziA, (1.19)
=1

where A, is an, x 1" complex matrix and {x;}?7, is a set of real scalar symbols.
Definition 1 A STBC (1.19) is an OSTBC if it satisfies the following

2T
X' =D #Ds (1.20)

=1

where ecach D, is a diagonal matrix. It follows that

AAl =Dyi=1,...,2T

; - N (1.21)
A,A] £ AJAI = 2(51']'171',1 S Vi<cly S 27
Tarokh ct al. [19] showcd that, in gencral, full-rate or orthogonal dcsigns exist for all rcal
constellations but only for two, four, or eight transmit antennas, while they exist for all complex
constcllations only for two transmit antennas (the Alamouti secheme). Howevcr, for particular
constcllations, it might be possiblc to construct orthogonal dcsigns for other cases. Moreover,
if a rate loss is aceeptable, orthogonal designs exist for an arbitrary number of transmit an-
tennas [19]. 1t is also shown by Wang and Xia [20] that the ratc of a generalized complcx
orthogonal design cannot cxceed 3/4 for more than two antennas. An example of the R = 3/4
ratc code for four transmit antennas is the following:

Xy T2 T3 0
: 5
-1 11 0 13
-3 0 »1 —712
0 -z3 x5 x

X= (1.22)



1.3.4 Quasi-Orthogonal Space-Time Block Codes

As mentioned above, Tarokh ct al. [19] showed that full-rate orthogonal dcsigns with complex
clements in its transmission matrix are impossible for more than two transmit antennas. This
has motivated Jafarkhani [21] to develop a full-rate complcx design for four transmit antennas
for which pairs of symbols could be decoded independently. This is only possible if one accepts
a loss of diversity compared to a true orthogonal design. Jafarkhani called this elass of codes
quasi-orthogonal space-time block codes (QOSTBC) and introduced the 4 x 4 eode

T 2 €Ir3 g

- - . -
—2'2 ry —X4 I3
. - . .
—T3 —XI4 Ty Ty
I ra —Ir2 I

X = (1.23)

where the strueture of the 2 x 2 bloeks mirrors that of the Alamouti code. The columns
X.,i = 1,2,3,4 of the matrix X divide into two groups {X,, X4} and {X2, X3} with
the eolumns from different groups being orthogonal. Jafarkhani showed that the maximum
likelihood decision metric is a sum f(xy,74) + g(x2,23) where f is independent of z;, x3
and g is independent of x, r4. The decoder finds the pair (x1,x4) that minimizes f(ry,x4)
and (independently) the pair (z2, z3) that minimizes g(x2, x3). Thus decoding complexity is
quadratie in the size of the signal eonstellation.

The main issue with QOSTBCs is that they do not have full diversity. Howevcer, as we
will discuss in Chapter 4 a number of full-rate, full-diversity eodes ean be constructed by
multiplexing quasi-orthogonal STBCs. We show that codes with this type of structure admit
fast ML decoding algorithms based on conditional optimization. Next we will eonsider other
methods for design of STBCs.

1.4 Design Criteria for Space-Time Block Codes

Under the assumption that perfect ehannel state information is known at the reeeiver, Tarokh
et al. [10] developed the following two dcsign criteria for the high SNR regime.

¢ Rank Criterion: Maximize the diversity gain, i.c. the minimum rank r of the codewords
difference X, — X, overall distinct pairs of space-time codewords X,. X ;.

¢ Determinant Criterion: For a given diversity », maximizc the coding gain, ic. the
minimum produet of the nonzero singular values of the difference X, — X, over all
distinct pairs of space-time codewords X, X,.

If » = n, for all pairs (X, X,). we say that the code is full rank. 1f X is full rank. we have
det(A;) #0 forall Ay (1.24)
where A,; = (X, — X, )(X, — X,)", and we say that the code has full diversity. This means

that we can exploit all the n.-n, independent channels available in the MIMO system.

1.5 Algebraic Space-Time Block Codes

In order to increase reliability, STB codes are designed to have full diversity with a large
minimum determinant. Such ¢odes can be constructed by looking at matrix representations of



algebraic objects such as Galois fields and cyclic division algebras. In this section, we give
descriptions of this class of codes which have bccome known as perfect space-time codes.

An interesting result of our rescarch is that these perfect codes can be seen as multiplexed
quasi-orthogonal designs, (see Chaptcr 3 and Chapter 4), which admit fast ML decoding algo-
rithms. The most important of these codes is the 2 x 2 MIMO system known as the Golden
Code.

1.5.1 The Golden Code

The Golden Code [22] is a 2 x 2 block space-time code that encodes four complex symbols
over two time slots and achieves full diversity. It is known to be the best 2 X 2 STBC in
having the largest coding gain. It achicves a trade off between rate and reliability for both one
and two receive antennas that is the best possible in terms of the diversity-multiplexing bound
derived by Zheng and Tse [13]. In fact, the Golden Code is incorporated into the 1EEE 802.16¢
(WiMAX) standard [23].

Codewords in the Golden Code take the form

1 fa O Ty +7r2 T3+ T4
X= E (0 (‘r) (i(mg + pxa) T+ ;1.1:2> ’ (1.25)
where {x};_; € C C Z[i] are the transmitted symbols, and C is a signal constellation taken to
be 2™ —QAM. The parameters 7 = (1+v/5)/2and p = (1—1/5)/2 are the Golden Ratio. The
diagonal matrix diag|a, @], where a = (1 + ip), @ = (1 + i7), serves to equalize transmitted
signal power across the two transmit antennas. The entries of Golden Code codewords are
drawn from Z[i][v/5] ¢ Q(i, v/5). Note that Z[][v/5] is the ring of elements of the form

(m + in2) + (ns + ing)V5,n € Z and Q(i, V/5) is the ficld of elements of the form
(a1 + ia2) + (a3 + ias), a; € Q. Following [24] we rewrite (1.25) as

1 fa O Y 7% {0 Ty T
x=zE)@2)Ea@En)] o

The set of integer matrices of the form
Ty ¢
(,_.y ) . ay ezl (.27)

forms a matrix representation ol the cyclotomic ring Z[(s], where (s is a primitive 8" root of
unity. This can be seen explicitly by making the identification

(s — (? (1)) i (1.28)

and for simplicity, we will drop the subseript and write ¢ = (s.
The cyelotomie ring Z[¢] is the ring of algehraic integers in the cyclotomic field Q(¢) and
any element of this ficld can be written in the form

a=ag+ a1+ a¢? + as®, (1.29)

with ao, a1, az, az € Q. The identification (1.28) extends to the matrix representation

= ao +taz a +1ias
a— Aq = (i(al +1ia3) ao + iaz> ' L



Figure 1.3: The subfield structure of Q(()

The field Q(¢) is a Galois extension of degree 4 over Q@ with Gal(Q(¢)/Q) = Do, the
dihedral group of order 4. There are four field automorphisms, 0, j=1, 3. 5, 7, given by

a;(¢) = ¢’. (1.31)

In fact, Gal(Q(¢)/Q) = {(o3,05). The subfield structure of Q(¢) is shown in Figure 1.3,
where we note that ¢? = i, ¢ — ¢* = VZand ¢ + ¢* = iv/2. Given any element a € Q(C).
the field norm is defined by

H o(a)

o €Gl(Q(C)/Q) (1.32)

(ag + a3)® + (a3 + a3)? + 4a.a3(ad — a2) + 4aoas(ad - a?).

No(¢y/ela)

In terms of the matrix representation (1.30) we see that

No(ey/el@) = |det(Aq)%. (1.33)

In fact, in terms of the relative norm Ng(¢)/q(:). which is defined by.

Nowoyamla) = oi(a)os(a), (1.34)
we have
Nyyram(a) = det(A,). (1.35)
Another norm on Q(¢) we will find useful is defined by
1
lall? = 3 (o1{a)or(a) + oa(a)os(a)) (1.36)
=ad +ak+a} +d} (1.37)
1
= 5 [14allz, (1.38)

where ||| - denotes the matrix Frobenius norm.
The Golden Code ean be written in the form

: T1 x3 I T2 T4
S - o (ira n) + E (m .,;2> (1.39)



where -
Bii (‘5 g) and Bp = —i (8 2) (1.40)

The matrices By and B; satisfy
T (Bu}) = 554, (1.41)

fori,7 = 1,2. A consequence of the structure of thc Golden Codc is that for any two code
words X, and X, their difference X; — X is rank 2 and

det(X, - X;}(X: - X;) > 16/25. (1.42)

An observation that may potentially lead to fast decoding algorithms for the Golden Codc
is that the cyclotomic ring Z[¢] C Q(¢) is a Euclidean domain with respect to the ficld norm
Ng(¢)sq- We refer the reader to the survey of cyclotomic Euclidean number ficlds by Akhtar
[25] for more details. The observation that Q(¢) is Euclidean goes back to Eisenstein in 1850.
Thus, for any two elements of a, b € Z[{] with b # 0, there cxist g, r € Z[(] such that

a=qb+r, (1.43)

with 7 = 0 or Ny(¢)/0(r) < Noeysq(b). In fact, we have

q=la/b] and r=a - |a/blb, (1.44)
where for any a € Q(¢), we define |a] € Z[(] by
lal = ao] + [@11¢ + la2]¢® + Las]¢’, (1.45)

where for ¢ € R, |z] denotes the nearest integer to . The Euclidean algorithm in Z[¢] enables
the efficient computation of a greatcst common divisor for any pair of cyclotomic integers a,
b € Z[¢]. This provides the basis for possible fast decoding schemes based on the extension
of an inhomogeneous Diophantine approximation sehemes such as Cassel’s algorithm [26}.
Rcscarch in this arca is ongoing.

Finally it is intercsting to notc that the IEEE 802.16e specifications include three MIMO
profiles having 2 transmit antennas, from which two are defined as MIMO schcmes on both the
down-link and up-link transmission of mobilc WiMAX systems. The first one is thc Alamouti
code, which is deseribed in Section 1.3.2, namcly, Matrix A, which achicves full transmit
diversity at the expensc of ratc loss. The sccond onc is spatial multiplexing, namcly Matrix B,
which achieves full ratc at the expense of diversity loss. On the other hand, the third MIMO
profile with two transmit antennas in IEEE 802.16e specifications, known as Matrix C, is both
a full-rate and full-diversity code. More specifically, Matrix C is a variant of the Golden Code.

1.5.2 The Pefect Space-Time Block Codes

Onc of our aims is the dcvclopment of polarization-time codes for fully polarimetric MIMO
systems. For this application we nced codes which have similar propertics to the Golden Code
but which are appropriate for more than 2 transmit antennas. The Perfect space time block
codes will turn out to be very good eandidates.

Perfect STBCs were first introduced by Oggiere ct al. [7] to have full-rate, full-diversity,
non-vanishing determinant and to be information losslcss. These codes are constructed for



2x 2.3 x3.4x4and 6 x 6 MIMO systems. An example of a 2 x 2 perfect STBC is the
Golden Code. The following are descriptions of 3 x 3 and 4 x 4 perfect STBCs. These are
written in a novel form that we have introduced in order to assist in the development of our fast
decoding algorithms which are discussed in Chapter 3.

3 x 3 Perfect STBC: The perfect 3 x 3 STBC transmits nine complex (usually from an
N —HEX constellation) information symbols {z, ? 1 over three time slots from three transmit
antennas. The transmit codewords of the 3 x 3 perfect STBC can be expressed as

T3it1  T3i+2 T343
M= ZB,H 313143 T34l T3it2 (1.46)
=0 JT3i42 JT3:43 T3t
where the diagonal matrices B, are
Bi=(1+jI3+0
Bz = (-1 - 2j)I; + j©? (1.47)
Bi=(-1-2)1a+ (1+5)0+ (1 +5)0°

with © = diag(6;, 02, 03),0, = 2cos(2'n/7), 5 = €*™/3. The B, satisfy
'l‘l‘([f] [3:11) = 76}711 (148)

4 x 4 Perfect STBC: The 4 x 4 perfecet STBC transmits 16 complex (N —QAM constellation)
information symbols {z; } !¢, over four time slots from four transmit antennas. The codewords
can be expressed as

Lol Tae42 T443 Taatd

3 3

W44 Tas4l Ta42 T4143

X=Y Bin|; i . . (1.49)
14143 W44 Taaypl T42

ILig2 IX4i43 ET4i4q Taipd
where
By = (1 - 3i)14 + i6?

B; = (1 -3i)6 +i0°
(1.50)

By = —ily + (-3 + 4)0 + (1 —1)6°
Bi=(-1+)l;-30+6*+6°
with © = diag(6,,02,03,04),0, = 2cos(2'w/15). The B, satisfy
(B, B,) = 156, (1.51)

1.5.3 Multiplexed Alamouti Blocks

Onc approach to high data rates is to multiplex Alamouti blocks where a high rate space-time
code might be eonstructed as a “linear” combination of Alamouti blocks. These codcs are 2 x 2
STBC with full-rate, full-diversity and have the structure that allows fast maximum likelihood
decoding which will be discussed in detail in Chapter 3.



Hottinen-Tirkkonen-Kashaev [27, 28]: These authors considered the 2 x 2 full-rate, full-
diversity STBC which has the form

[T 33 s, —25
X = (Tz T;> ", (zz z}.) (1.52)
where {z:}}_, € Z[i].

r=(89), ()-v()

and
1 142 1420
”=77(1+2i l—i)’ (1.54)
which is a unitary matrix. This eode is also known as the Silver Code [29].
Sezginer-Sari {30]: Sezginer and Sari proposed a full-rate, full-diversity 2 x 2 STBC which

can be expressed as

(1.55)

X - [en + bxs —cxy — dxy
T \ary + brs  cxi +dr}
where a, b, ¢ and d are complex-valued design parameters that are chosen to optimize coding
gain. In terms of the transmitted power, Sczginer and Sari have expressed the desired condi-
tions as

lal* + [6]* = 1 = |¢|* + |d|

] (1.56)
lal* + le* = 1 = b}* + |d]”

The first condition ensures an equal transmit power at ¢cach symbol time, while the second
condition ensures that equal total power is transmitted for cach symbol. These conditions
imply that all the design parameters should have the same magnitude. i.c.

lal = (8] = |e| = |d] = 1/V2 (1.57)

Rabici—-Al-Dhahir [31]: These authors have eonsidered a full-rate, full-diversity STBC for 2
transmit antennas which takes the form

X = (mml - Bz Bixy + m.u) (1.58)

onx3 — Fax] fax) + azx)

where «, a2, 3) and 32 are real design parameters chosen to guarantec that the code is an
information lossless STBC and to maximize its coding gain. For this purpose, the following
conditions must be satisfied

ol + 2
(a1, 1. @z, 32) € R suchthatd a3 + 32

1
1 (1.59)
ayay — 1B =0



1.6 Multiple-Antenna Channel Capacity

One important aspeet of the use of STBC:s is their effect on the capacity of the communication
channel {32, 19, 33, 34]. That is, if we insist on using a particular STBC do we degrade
the channel’s capacity to carry information. In this seetion we briefly discusscd the mutual
information and capacity of a MIMO system which will be useful for later discussion on system
performance, particularly for polarimetriec channels.

Consider a MIMO Gaussian ehannel charactcrized by a fixed 7. x n, complex matrix H =
[hi;]. where h; is the complex number representing path gain between transmit antenna ¢ and
receive antenna j. At each symbol time, the n,-dimensional receive signal veetor is represented
by

y=Hzx+n (1.60)

where a is the n;-dimensional transmitted veetor and the noise 72 is a Gaussian veetor with
n, i.i.d. components. Assuming that the vector x has circularly complex Gaussian distributed
components and H is deterministic, Teletar [2] showed that the mutual information ean be
expressed as

1
207

I{xz:y/H) = log, det (In, + HQHt> (161)

where 1., is the n, x n, identity matrix, o is the variance per real dimension of the noise n
and Q is the eovarianee matrix of x,

Q = Efzz'). (1.62)

When H is known perfeetly at the transmitter, then the mutual information can be optimized
with water-filling [2, 35] to give the eapacity

Gi= max I{x, (1.63)
Q.Tr{Q)< P ( y)

where P is the maximum power available at the transmitter.

Consider the case where the channel state information, H is perfectly known only at the
reeeiver. Teletar [2] conjeetures that when the ehannel matrix is random, non-ergodie, then in
the high SNR region, the optimal covariance matrix for the source is given by

Qo = (P /1)L, . (1.64)
Thc corresponding mutual information is
I(z:;y) = log, det <I + %HH") (1.65)
where p = P, /20°. The ehannel capacity is then given by
C = En [Iogz(let (I + ﬁHH’)] (1.66)

where the expectation £ is taken over the possible channel matrices H.




1.6.1 Space-Time Coding and Channel Capacity

Consider a MIMO system with ¢ transmit and n, receive antennas. A space-time code X
represents a STBC codeword to be transmitted from n, transmit antennas, extending over 7’
time slots. The case 1" = 1 is just spatial multiplexing. The n, x T reecived signal matrix is
given by

Y= [ LHX W (1.67)
Tie

where W e €™ *T g the additive white Gaussian noise matrix with entries distributed as
CN(0,207).

In order to understand the impact of the STBC on channel capacity, a new capacity C can
be derived with the induced (equivalent) channel matrix. To this end we first rewrite (1.67) as

y=‘/£—'Hm+n (1.68)
ny

where vy is the T'n, x 1 reccived signal vector and x is a veetor of information symbols and H
is an equivalent channel matrix. Then the eapacity of the new equivalent channel H is given
by
C = Er | = logy det (1 L nnt 1.69
=FEwnlm og,det { Irn, + = 3 (1.69)
If C = C inequation (1.66) then the STBC X is described as information lossless. An example
of an information lossless eode is the Alamouti eode for a 2 x 1 MIMO system.



Chapter 2: Bayesian Approach to Interference Cancellation

The famous space-time bloek eode diseovered by Alamouti [14] is a remarkable signaling
secheme as it allows simple maximum likelihood (ML) decoding. The Alamouti code also
faeilitates higher data rates through multiplexing of parallel data streams and the addition of
a second antenna at the receiver that performs interferenee cancellation. In this chapter, we
consider interferenee eancellation for multiple Alamouti sehemes using a Bayesian approaeh.

Interferenee eancellation for two Alamouti users has been studied and analysed previously
in [36, 32, 37]. Here we want to be able to extend this two Alamouti secheme to more complex
and varied situations and in particular to use it with polarization diverse transmit and receive
antennas. Our Bayesian approach provides a unified framework with which to understand the
relationship between various signal detection techniques and leads to a new parameter which
can be used to prediet the performanee of the Alamouti scheme system without needing to
resort to simulations.

2.1 System Model

The eneoding rule for the Alamouti STBC is deseribed by a 2 x 2 matrix

(z1,22) — ( :; ;?) @2

where the rows represent different antennas, the eolumns represent different time slots, and the
entries are the symbols to be transmitted.

Consider two eo-ehannel users, each using the Alamouti code. Let ¢ = (r1,22) and 8 =
(x3,x4) be the eodewords transmitted by the first and second users respectively; r,; is the
signal received at the antenna ¢ at time slot j, and h,; denotes the channel gain from transmit
antenna 1 to the reccive antenna j. The received signals at the two receive antennas can be
represented as,

Iy

(rir.m2) = (hn, hay) (;; :%) + (har, har) (IB :3) + (n11.m12) -
22)

»

T x5 'y —i
(r21.722) = (M2, ha22) (r; .r?) + (h32. ha2) (:: :;—:) + (121, 122)

where the noise samples n,; are independent samples of a complex Gaussian random variable
with zero mean and variance 202, Equation (2.2) can be rewritten as

Ty =cHy + 3G + 1y (2.3)

T2 = cHa + 8G2 + na

where 7y = (r11, —712), r2 = (r21, —732) and
_ hyy —h3 har —hi,
Ry = (hm i) = lan g

- . (2.4)
g ’1,12 = h22 g o ’1,32 _”-‘12
V= \hy A, 27 \hs2 hi )




Rewrite (2.3) as
r=cH+sG+n, (2.5)
wherc
r=(rir2),H=(Hi H2)and G = (G G2). (2.6)
The problem here is to dctcet ¢ and s. The challengc is that the solution involves a grcat dcal
more computation than the simple Alamouti schcme, particularly for large symbol constella-
tions, due to cross correlation terms in the likclihood function.
The Alamouti code is in fact a matrix representation of the Quaternions. Thus the analysis

of multiple Alamouti codes is facilitated by an understanding of the propertics of quatcrnions
and quaternion linear algebra. We turn to this now.

2.2 Properties of the Quaternions

The quaternions H are a non-commutative extension of the complex numbers. A general
quatcrnion can be written as

g=qo+qi+qg]+qk 2.7

where qo, q1, G2. g3 € R and ¢, 3 and Kk satisfy the defining relations
?=2=k2=-1, (2.8)
igk = —1. 2.9)

The conjugate of a quaternion g is defincd as

g =qo—qi—q2j — gk. (2.10)

The set H is closed under addition, multiplication, inversion and conjugation. One can compute
with the quaternions using these relations just as one does with complex numbers using i* =
— 1. The quatcrnions have a norm defincd by

lgll = VaTa = \/a§ + a7 + g5 + a3 (2.11)
W can also define the rcal part of a quaternion to be ®(g) = go and notc that for any quaternion
7" +q=2R(q), (2.12)

and
g =q <= q=Rqg). (2.13)

There is a faithful representation of H in terms of 2 x 2 complex matrices dcfined by

gp=Tv. gger "’3> . (2.14)

Go + 11+ q23 + g3k — (_(h +iq3 q) —iq]

The 2 x 2 matrix herc has the Alamouti space-time block code structure

h] h,z
(—h.; h;) (2.15)

with hy = go+iq1, ha = g2+igs € C. Note that in (2.14) we identified the real quaternions go
with rcal multiples of the identity goI>. Furthermore, it can be scen the quaternion conjugation
corresponds to Hermitian conjugation for the matrix representation. If H is a matrix of the
form (2.15). thc quaternion properties (2.11)—(2.13) correspond to:
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QU HI? = iTe(H H).
(Q2] H'H = HH' = |H|? L.
Q3] H + H' = 2R(I)1a.

[Q4] H = H' <= H = R(h)L..

2.3 Properties of Block Quaternion Matrices

Here we consider some properties of vectors and matrices with entries that are quaternions.
For example a 2 x 2 quaternion matrix takes the form

§ = (2; ij) (2.16)

where s1, 52, 53,54 € H. If such a quaternion matrix is Hermitian symmetric, i.e. S = st
we refer to S as a quaternion symmetric matrix. Such a matnix has real quaternions on the
diagonal.

Theorem 2 A quaternion symmetric matrix S has the following properties:

[Bl] Ifq, q2, - ,qn € H are quaternions then
(gf ¢5 ... qn)S(9 G2--- qN) = q, (2.17)
for some real quaternion a.
[B2] S has real eigenvalues and complete set of orthonormal quaternion eigenvectors.
[B3] If S is nousingular then S~ is also a quaternion symmetric matrix.

We note that in the 2 x 2 matrix representation defined in (2.14) quaternion matrices are com-
plex matrices built from 2 x 2 quaternion blocks of the form (2.15) and that the real quaternions
are real multiples of I2. Since the represention (2.14) is faithful we can use it to prove algebraic
relations (as we do below) which are true for the abstract quaternions.
Proof: Property BI follows from the faet that the left hand side of (2.17) evaluates to a

quaternion «v which satisfies ™ = « and so must be real.

Property B2 follows from the fact that S is a complex Hermitian symmetric matrix. Define
column veetors hy and ho by

(hi,ha) = (Hh 1z ... HN)Y. (2.18)

The vectors h; and h; are orthogonal and satisty ||k || = [Jh2||. We then have by Property
B1, that the Rayleigh quotient is

hiSh,  h}Sh,
hlih, hih,

(2.19)



Thus, if hy is an eigenvector of S, then h» is also an eigenveetor corresponding to the same
cigenvalue. Overall we can write S as

N
Si= 3 il (2.20)
j=1

where the »; are the real eigenvalues of S and where the K; are the corresponding normalized
quaternion cigenvectors. The quaternion eigenveetors satisfy I\’JT K¢ = 0;,¢1,. Finally, if S is
non-singular, then hy (2.20), 5~ is block quaternion symmetric. ]

We note that the relation (2.19) explains the computational “miracle” reported in [36] where
the filter that estimates c is independent of the interfering signal s.

2.4 Bayesian Detection

The model (2.5) deserihed above implies that the likelihood funetion of eodewords ¢ and s
given the received signal r is given hy

1 1
p(rlc, s) = 251 SXP (—F [[r —cH — Sg||2) : (2.21)

Our prior knowledge of symbols x, is that they are seleeted from the same constellation C
independently, and that each symbol in C is transmitted with equal probability. We will also
assume that the constellation is centered and normalized so that

E{c} =0 and E{c'c} =1,

(2.22)
E{s} =0 and E{s's} =1,.

From Bayes’ rule the posterior prohability of ¢ and s given the received data r is given by

p(c)p(s)p(rlc, s)
c.acc2 PlE)p(s)p(r]c, s)
> e.sec2 P(Tlc, 8)

plc. s|r) =
2 (2.23)

In the Bayesian approach to decision theory we introduce a loss function L(c, s|é, §) which
quantifies the loss incurred in deciding the transmitted symbols are ¢ and § when ¢ and s were
transmitted [38]. Bayesian deeision theory then seeks to minimize the expeeted loss

p(&,8) = Y L(c,slé, 3)plc, s|r). (2.24)
c,9€C?
If we take L to be the 0-1 loss function

0, ifc=c¢ands = s,
L{e,sl¢, ) = {1, otherwise, (2.25)

then p(e, 8) is minimized by the maximum a posteriori (MAP) estimate

(¢, 8) = argmax p(c, s|r), (2.26)
c,8€C?



and the expected loss is
plc, 8) = Z ple, sir). (2:27)
(e.s)#(¢,8)
which is the posterior probability of error. If as we have assumed p(c) = 1/|C|* and p(s) =
1/|C)?. then (2.26) is equivalent to the maximum likelihood cstimate

(¢, 8) = argmax p(r|c, 8). (2.28)
c.86C?

Letx = (¢ 8), A = (H G)", then from the likelihood function p(r|c, 8) given in (2.21), we
have

p(r|e, 8) x exp (—%(m - &)R Y(x - :i)') ; (2.29)
where
& =rAl(aat)™t, (2.30)
and
S_ 1, 1 (IHPT HG!
i 4l oy 0 23
R 0,2A A 0_2 ( ng "g”2 Iz 1 ( l)

where ||-||* = 3 ||||i- For a given constellation C, the performance of (2.28) in decoding ¢
and s is determined by the determinant of R~'. We havc from [39),

4 G 4
det(R™') = %4”_(1 — AP (2.32)
where "
HG
s 2.33)
=G

The paramcter A is an inncr product of two unit quaternion vectors, and measures the angle
between the desired signal channel vector H and the interference signal channel vector G.
Wc show in Section 5.3 [40] that this parametcr is fundamental in the analysis of detection
performance for multiple Alamouti schemes involving polarization.

Clearly, the MAP detcctor in (2.28) involves a complex search for a large constellation, as
(c.s) € C*. For example, a 2* symbol constellation involves 2'° evaluations of the likelihood
function. This motivatcs the development of a number of alternative sub-optimal solutions
which we will discuss from a Bayesian perspective.

2.5 Bayesian Interference Cancellation

The motivation behind interference cancellation is that the computation of full MAP/ML detec-
tion can be reduced if one of the signals, s say, can be canceled out. We would then only need
to search over ¢ € C?. This implies that we should attcmpt to marginalize the joint posterior
distribution for ¢ and s with respect to s. This lcads to

plclr) x Z p(r|c. s) 2.34)

31.82€C




and the MAP decision rule is

¢ = argmax p(e|r). (2.35)

cec?

It is evident that this does not help as the sum over s cannot be evaluated analytically, and
so the evaluation of (2.34) requires just as many likelihood function evaluations as (2.26) or
(2.28). However, we notice that if the sum in (2.34) were to be replaced by a Gaussian integral
the marginalization could be computed analytically. In Bayesian terms, the trick is to forget
something that we know in order to reduce computation. Instead of using the fact that s lies in
some constellation, we simply recall from (2.22) that

E{s}=0 and FE{s's}=1I. (2.36)

The prior for s is then taken to be the maximum entropy distribution satisfying the constraints

(2.22). This is the Gaussian distribution with zero mean and unit variance, i.e. p(s) o
t > i : . ; /

exp (—’—;—) The new prior for s is perfeetly consistent with our partial prior knowledge

of s, it just doesn’t represent all that we know. Overall this mcans we allow some inereasc in
the probability of error in detecting codewords ¢ (and s), for reduced computational load. We
substitute (2.21) and the prior p(s) into (2.26) and marginalize the posterior distribution with
respect to s to obtain

1 2 sst
plelr) « /n: exp (_Z’r—z llr — eH - sG|| > exp (——2—> ds

X exp (—%(c - OHR M (e - a)’) (2.37)
where
R = 1_42 - #— (2.38)
ot a%(||G]" + ¢?)
and

é=rR "M (HR'HN), (2.39)

and we have dropped terms independent of c.
Since R™! is a quaternion symmetric matrix, we have from Theorem 2,

HRT'H' = 57l (2.40)
where 3% is real and positive. This is the projection of interference plus noise onto the signal

subspace. Substituting (2.40) into (2.37) we obtain two independent maximization problems
for decoding symbols x; and x as

B . B 22
ple|r) x exp —7|a,1—x|| —7|.1'2 - 2| ], (2.41)

where

&= rRTH, (2.42)
(32
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and

ez ( |A/? > .
62 = 1K= , i) (2.43)
o? i+02/|G)°

This captures the solution obtained in [36], [32], and will be called the IC solution for conve-
nience. Note that if G = 0, then the performance described by (2.43) will be reduced 1o the
performance of a single STBC user with 2 receive antennas, that is

1= " [Ez21is
o? ’

2 -2 (2.44)

JEVTH(' =
If cither H; = O or H, = 0 then we obtain the performance of a single STBC user with one
receive antenna.

Assuming that symbols ¢ from the first terminal have been decoded correcily, the receiver
then cancels the contribution of the first terminal in the received signal vector r. The receiver
decodes symbol s by applying MAP decoding (2.28) to the received signal vector alter cancel-
ing signals from the first terminal. This gives

! Ijg -~ 12 33 ~ 12 3
p(s|r’) x exp —7|a'3 - #3]° - 7|.’l‘4 -i4]7 ), (2.45)

where

1 ? ~1 2

rGg' and 35 = : (2.46)
IG11° o?

Assuming that the symbols x; and x2 have been decoded correctly, we can see from (2.46)
that the performance for the decoded symbols s is equivalent to that of | user with 2 transmit

and 2 receive antennas as previously noted in [32]. The performance for decoding symbols ¢

and s is given by
g - M igi (, AP > i
6= =g A\ = emnara ) 2.47)
ol 1 +02/|Gll
At this point we note that it is clearly advantageous to have chosen to cancel the Alamouti
channel with the lower SNR. Thus, il [|G|| > ||H||. we would exchange the roles of H and
G in the above algorithm and analysis. We further note that xy and x; are assumed to have
been decoded correctly, therefore (2.47) provides an upper bound for the performance ol the
IC solutions.
Alternatively, symbols s could be decoded in a similar fashion to the decoding of symbols
c. In this case the posterior probability for s given r becomes

' =r-cH, (&3 i4)=

d? > J2 f
p(s|r) < exp (f 2—"‘|.1'3 = %= 7"[1‘4 ;1"4|2> : (2.48)
where 1
5= Izrlf Yot (2.49)
2 _I6I° ( ik .
g = 2 - 2 2 3 (2-0)
o I+0%/|H|
and
I ¥ HIH

S AT G D e (251)
o o*(||H|* + a2)
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The performanee is then given by

4 4 2 2 2 2
s = LI (D 2) (-7 P ;). e
@ 1402/ |Gl 1+ 02/ ||Hl)

2.6 The Zero-Forcing Decoder

Naguib and Scshadri [37] show that if

- I, -GiG,; !
W= (-HQH," 1 ) (2.53)
then
ry _ (T _ (H 0 (e n}
W (74) = (T;> = (0 g,> (5) + (n;) : (2.54)
where
H =Hi-GiGs'"Ha and G = G2 — HaH; ' Gy (2.55)

The matrix W transforms the problem of joint deteetion of two co-channel users into scparate
deteetion of two individual spacc-time users. Furthermore, the algebraie strueture of the bloek
spacc-time code (elosure under addition, multiplieation and taking inverses) implies that the
matrices H' and G’ have the same strueturc as the matrices Hq, H2, Gi and Go. Now the new
noise vectors ny and nb are correlated, and if we take these correlations into account and
design the optimal dcteetor we would just be back to (2.26). The key to reducing eomputation
is to again forget something that we know. In this ease we forget that the noisc veetors n} and
n’, are eorrelated and replaec the joint distribution of n} and n, by the higher entropy produet
of marginals.

This reduces the problem of joint deteetion of codewords ¢ and s to four independent max-
imization problems. That is we have the likelihood of the codewords given the received signal

’ 32 o BE ~ 10
plrile) xexp | — 9 |z — 4] = ?l.’l,‘z - F2|° ), (2.56)
: 32 g 52 .
p(r2|s) ox exp (—7|$3 - z3)* - ?|T4 = 1‘4|2> 5 (2.57)
where
(&,8) = ( ryH' e ) (2.58)
IH12 (1 = [x12) " 1IGI2 (1 = [A2)
with

Gr. _ mid ‘ 200 132
= P g - M (2.59)

o

The performancc of the zero-forcing decoder for symbols ¢ and s is given by

ﬁ%l-

I=1* gl
s (s [P (2.60)
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Figure 2.1: Behaviour of IC for two users of Alamouti code, at different SINR

2.7 Performance Analysis

First note that the expressions in (2.32), (2.47), (2.52) and (2.60) give the effective SNR when
estimating ¢ and s. This effective SNR includes both noise and interference. Now consider
the performance expression deseribed in (2.43) or (2.50), if the power of the interfering path is
small i.e. if ||G||> — Othen 3% — ||H]||? /. That is, the performance improves as the inter-
ferenee power deereases and converges to that of a single space-time user and a reeeiver with
two antennas [36]. Figure 2.1 shows the simulation results which demonstrate this behavior.

To eompare the performance of the three different solutions, we first determine the effective
SNR of a symbol for each method by taking a fourth order root in (2.32),(2.60) and (2.52). to
obtain

H
SNRuyap = %M_ﬂ V1= 2, (2.61)

G
SNRy;: = ”Hcll—szHU - A1), (2.62)

2 2 .
¢ 1+02/|IG]| 1+a?/||H]|

If the channels H and G are orthogonal i.e. |A|? = 0 then there is no differenee in the perfor-
mance of the three solutions. From (2.61)-(2.63), it is clear that when |)\|2 # 0, the maximum
likelihood solution outperforms the zero-foreing and 1C solutions. Furthermore, the perfor-
manee gap (the ratio or differenee in dB for a given error rate) between zero-foreing . 1C
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Figure 2.2: Performance comparison of the three different detection algorithins for two users
of Alamouti code

solution and maximum likelihood solution can be explicitly described as follows:

L N i (2.64)

SNRwmap

(A2 (A2
SNRi¢ _ (1 B na’/nglﬂ) (1 B l+a2/tmu2) (2.65)
SNRmap (1-1A3 . .

Figure 2.2 shows the simulation rcsults of interference cancellation for two co-channel uscrs,
cach using the Alamouti scheme with 8PSK modulation comparing the threc different solu-
tions. The channcls H and G are taken to havc the channcl scparation |[A[? = 0.8 with a
tolcrance of 0.05, or in other words, the anglc between the two channels is = 37°. In order to
show that the performance expressions obtained above are valid, Figure 2.3 shows the result of
shifting the zero-forcing and IC solutions shown in Figurc 2.2 by the performance gap given in
(2.64) and (2.65) respectively. As shown all curves arc now aligned.
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Figure 2.3: Performance of the three different detection algorithms agree after the SNR is
shifted by the differences given in (2.64) and (2.65)

2.8 Generalization to N Alamouti Users
We now extend the analysis of Section 2 to detection of N co-channel users using N receive

antennas, where each user employs the Alamouti STBC. The generalization of (2.5) is straight-
forward, and the reeeived signal ean be written as

N
r= Z ZnGn + 1 (2.66)
n=l,

where G,, = (Gn,1,Gn.2,- -+ , G, ~) are the channel matrices from user n 1o reeeiver antennas
1,2,--- . Nand x,, = (xn.1 T 2) isthe codeword transmitted by user .

2.8.1 MAP/ML. Detection

Letx = (x1, 22, - ,xn) and A = (G, Gy, -+ ,Gn)" then the posterior distribution
p(x1,-- ,xN|r) is given by

(@1, ,TN|T) X exp (—(:1: —z)R 'z - :E)f) : (2.67)

where R~' = AA" and is obtained by

[GI*L2 GG} ... GG
S GGl G2’ ... GGl
R == 4 . (2.68)
20 ; g o
GnGl  GNGL - |IGN|I2

25



The performance of the MAP/ML detector is determined by
_ Gt iGe)* - 6w

B, =det R™! ~ Ve, (2.69)
o 4
where
L M2 ..o N
M, Lo
2 y
V= det ; (270
¢ : 2
L LT
with ;
GmG
Amp = (2.71)
Gl Gyl
Writing (g,, 1, 9,.2) = Gn/ ||Gn]| we sce that the quantity V is the volume of the parallelotope
generated by the complex vectors {g, ,, g, | = 1,---, N}. Itis a function of the pairwisc

quaternion angles between the users. Since the vectors g,, | are normalized, 0 < V < 1. We
refer to V' as the normalized channel volume. In terms of V', we can define the signal to noise
ratio per user symbol as the (2/V)"-root of (2.69), that is,

SNRasz = G (SNR;,SNR,, -+ ,SNRy) VIV, (2.72)

where SNR,. = [|G,.||? /o2, is the SNR of the n™ user and G denotes the geometric mean. For
the two user case deseribed in Section 2.5, the normalized channel volume V = 1 — |A]2.

2.8.2 Bayesian Interference Cancellation

Bayesian interference cancellation in the N user case is analogous to the two user case, al-

though it becomes tedious to marginalize the posterior probability p(x1, x2,- -+, n|7) with
respect to x because of the multiple integrations. However, since we assume the prior distribu-
tion for 2, x3,- -+ , x x to be Gaussian with zero mean and unit varianee, we have

"

(Z 8nGn + n) ~ N(0, R), (2.73)
n=2
where
N
R=0"Lv + ) GhG,. (2.74)
n=2

Thus, we can write down the posterior distribution p(x:|r) directly as

B a0 D = g
p(zi|r) x exp --2—|1|‘1—a,1,|| —7|m|,2—m|,2| (2.75)

where y

3 = ErR“G}. (2.76)
and /3 will be computed below. Note that the reduced MAP decoding now consists of two
independent maximization problems for decoding symbols s;,; and s 2.
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In order to judge the performance of this reduced MAP decoding scheme we expand the
positive semi-definite block quaternion symmetric covariance matrix R’ given by

N
R = Z GG (2.77)

n=2

in terms of its block quaternion eigenveetors, (See Appendix), so that

N
R =0l + Z K/ Kn. (2.78)

n=2

where KK, = 0.if n # j, and we have normalized the eigenvectors K., so that || K, 12 = K.
their corresponding eigenvalues. In general some of the ; could be zero and so they would not
contribute. Thus, we have replaced the Alamouti signaling interferers G, hy an equivalent set
of mutually orthogonal Alamouti signaling interferers K,,. Interference caneellation ean now
be analyzed in terms of these equivalent interferers.
Applying the Matrix Inversion Lemma [41], the inverse of R is seen to be
N t
= lzl.hN - --'5 —Ka’i— 2.79)
N " 02 S Kl + o?

and so we have

2 _ G S P
B = | L I — S| S | (2.80)
o? ZQ 1+ 02/ ||Kal?
where p
Gi1K
Ap = o (2.81)
1G]l 1K=l

|An|? measures the angle hetween the desired signal channel G; and the n"" equivalent inter-
ferer channel K.

As with the 1C algorithm descrihed in Section 2.5, interference caneellation is first carried
out 10 separate the user G; with the highest signal 1o noise ratio. The transmitied symhols for
this user are estimated (detected) and then substituted in (2.66) 1o ohtain

N
r'=71-5,G; = Z $nGn + 1. (2.82)
=1
n#£y
The above procedure is then repeated with the Alamouti channel having the next highest SNR
and so on. This algorithm is the counterpart of Foschini’s seheme [42] for space-time multi-
plexing one dimensional signals. Here we are multiplexing 2 x 2 matrix signals.

2.9 Summary
Our Bayesian analysis of interference cancellation provides a unified framework with which

to understand the relationship between various techniques for signal detection. We ohtained
simple new results for performance analysis in terms of SNR. The analysis also leads 1o a
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new parameter which measures the angle between a pair of block quaternion channel vectors.
This parameter provides new theoretical insight to understanding and being able to predict
the performance of different decoding algorithms as a function of signal to noisc ratio. In
Chapter S we apply this parameter to analyse the performance of various coding schemes for
dual polarimetric antennas.
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Chapter 3: Conditional Optimization and Fast Decoding
Algorithms for Space-Time Block Codes

The drawback of the full-rate full-diversity STBCs listed in Section 1.5 is the decoding com-
plexity. The sphere decoder was developed [43, 44, 45] 10 reduce the computational complexity
by limiting the search 1o only within a sphere of given radius. Howevcr, the initial radius of
the sphere depends on the signal-to-noise ratio and the channel condition number. When the
channel matrix is close to singular, the preproccssing stage of the sphere decoding algorithm
yields a plane of possibilities rather than a single initial estimate. When this occurs, the lattice
point search degenerates to an cxhaustive search, and consequently the overall complexity of
the sphere decoder is no better than the exhaustive search. In wireless communication, when
the channel between base station and terminal is line-of-sight, the induced channel is rank 1.
This has motivated us to develop fast decoding algorithms for a number of important codes
which have fixed low complexity across channel conditions, i.e. across propagation conditions
from pure line-of-sight to rich scattering environments.

Our fast decoding algorithms are bascd on a technique called conditional optimization. This
technique is used widely in statistical estimation and signal processing to reduce the search
space of an optimization problem by taking advantage of the possibility of analytically op-
timising over some subset of the parameters conditioned on the remaining parameters. The
approach is applied to a large class of full-ratc, full-diversity space-time block codes. This ap-
proach can also be applied in an approximate form to the Golden Code and perfect space-time
block codes to obtain essentially ML performance with reduced complexity [46, 47] compared
to exact ML decoding.

3.1 Two Users of Alamouti Signaling

In Chapter 2 we considered an interfcrence cancellation approach to the detection of two users
of Alamouti codes, which provides linear complexity processing with a corresponding trade-
off in pcrformance. We show here that such systems have the structure that allows fast ML
decoding with complexity O(N?), wherre N is the size of the underlying constcllation.

From (2.3). the received signal for a two Alamouti user system is given by

r =cH; + 3G +ny

~ 3.1
T2 = cH2 + 8G2 + iy

where ¢ = (21, 12), 8 = (23, 74),
— hi —h3, == hair —hy,
[ <h21 hiv ) G ha  h3 )0
hi2 - h3 _ [haa —h3,
He = <h~2~2 12/ G2 = haz  h3y )
Interference cancellation as described in Chapter 2 is a suboptimal approach with lincar com-

plexity, [48, 37]. Here we show that two-user ML detection of Alamouti signals is possible
with complexity O(N?).

(3.2)
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3.2 Code Multiplexed Alamouti Blocks

An approach to constructing high data rate codes is to multiplex existing codes. For example,
a high rate space-time code might be construeted as a “linear” combination of Alamouti blocks
[27, 30, 31, 49] of the general form

[T —x5 T3 —T;
x= () ea (2 2. -

- (3 8)

TP P4
is usually taken to be a unitary matrix [SO]. This restriction on A leads to code properties such
as cubic shaping and information losslessness (see [7] for details on cubic shaping). However,

we note our fast deeoding aigorithms do not depend on this property and will work for arbitrary
non-singular A.

where the matrix

Remark 1 If A is a unitary matrix of the form

A= <<Pl —995) (3.4)

¥£2 ¥

then (3.3) reduces to Alamowti signaling with a non-standard coustellation and decoding is
essentially linear in complexity. One example is Alamouti signaling with 16-QAM viewed as
a multiplexing of Alamouti blocks employing 4-QAM. However a disadvautage of this con-
struction is that the value of adding a second receive antenna does not extend beyond noise
averaging, in contrast to codes such as the Golden Code where it provides additional diversity
gain.

A number of codes proposed in the literature are of this multipiexed form. We discuss these
examples in turn.
Hottinen-Tirkkonen—Kashaev [49, 27] These authors considered the family of 2 x 2 fuii-
rate, full-diversity STBCs as deseribed in (1.52). This code can be expressed in the form of

(3.3) with
1 1+7 -1+2¢
A=W<—l-2i —1+i)' L
At the reeeiver, the reecived signal is represented as in (3.1) where My, H2 are matrices as
defined in (3.2), and
g1t —9g3 912 —@32
= 5 = < 3
7 <921 g”> v G <922 gm) 60
where
(911,921) = (i, ha )N, (912, 922) = (M2, ha2)A. 3.7

Sezginer-Sari [30] Sezginer and Sari proposed a 2 x 2 full-rate, fuil-diversity STBC given in
(1.55) which can be written in the form of (3.3),

_ (om1 —exd 0 1\ [bry dr3
= <a.n cm;> i <1 0) <b1'3 —dx} ) (3.8)
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Hl _ (Ohu

ahzy

H

and also leads to the received signal expressions as in (3.1) with
'—(’. hil .
(_t h;l) . gl =

ahys —c"h3, G
ahy2 chiz) 7

bhay

(I)h“ —(1"151

)

d"hi, -

bhiz —d*h3,
bha, d'hi,

Rabiei-Al-Dhabhir [31] Rabiei and Al-Dhahir propose the code given in (1.58) which can be
rewritten as

T T4 01 r3az ra2a2
X = (—.’l};ﬂz ma;) + (1 0) (—J;m m;m>= CRLY
and the received signal can also be expressed as in (3.1) with
c=(x1,23), 8= (r313),
Ty = (T|1,7‘I~z). o= (T21,T32)~
o h|1()1 h;lljg = 1121(12 ’111/31 A5
H (—112”32 hi o = —hnB k3o ) )
e hizoq h3202 Ga - hacz his3
2= —h2282 hizay ) s —h1251 hiaz /-
3.3 Fast Optimal Decoding
As shown in the last section, the decoding problem for all cases takes the form
r =cHi+ 8G +n, 3.12)
ry = cHz + 8G2 + na

where ¢ and s are vectors of a pair of symbols x, and H;, H2, G and G2 are Alamouti blocks.
Assume that symbols z,,7 = 1,...,4 are selected from some QAM constellation C of size
N. We now show that exact ML can be implemented with complexity O(N?), through a very
simple algorithm. First write (3.12) as

r=cH+s8G+n 3.13)

where 7 = (r1,72), H = (H1,H2), G = (G1,G2) and n =
function for (3.13) is

{n1,n2). The likelihood

! 2
p(r|s, €) x exp ( 292 |7 — cH - sG|| ) (3.19)

and the ML estimate is given by

(€, 8) = argmax p(r|s, c).

c,s€C?

3.15

A first glance this optimization seems to involve a search over C*. However, conditional
optimization can be applied to optimize (3.14) exactly as follows. First maximize (3.14) with
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respect lo ¢ given s, by cxpanding (3.14) and completing the square, we obtain

1 H'H
p(ris, c) x exp (—m(r — 5G) (14 - W) (r - sg)T)
> (3.16)
e (M
p 202 llc C(S) | )
where ; 2
Bl 0 B0 (3.17)

IIH)1®

and ||H||*> = 1 ||H/|.. Thus the ML estimate of ¢ given s is
¢(s) = Q(e(s)). (3.18)
Substituting (3.18) into (3.14), we obtain the optimization problem for s alone:

8 = argmax ||r — &(s)H — sG||*. (3.19)
s€C?

Thus, (3.19) and (3.18) provide an algorithm for obtaining the ML solution of ¢ and s, which
involves at most |C|? = N? evaluations of the likclihood function. That is, we have an O(N?)
algorithm for estimating s and c.

Remark 2 Above we have assumed that a QAM constellation is used. This is not necessary
Sor conditional optimization 10 provide a computational benefit, but does, along with certain
other lattice based constellations, provide maximum compwational benefi. For an arbitrary
constellation the quantization step (3.18) is replaced by a search which is at most O{|C|),
while if the constellation is a Cartesian product of two real constellations, i.e. C = R x R
then this search is at most O( \/[_C_l) Finally, if the constellation is a subset of one of a number
of lattices, such as the QAM or HEX constellations, then the quantization step is O(1).

3.4 Conditional Optimization

In the previous section we uscd a conditional optimization approach to dcvelop fast ML de-
coding algorithms for multiplexed Alamouti codes. Herc we consider conditional optimization
from a more gencral perspective and discuss its application to fast decoding of space-time
codes.

Conditional optimization is a tcchnique widely uscd in statistical cstimation and signal pro-
cessing. The goal of this tcehniquc is to reduce the search space of thc optimization hy taking
advantages of the possihility of analytically optimizing over some suhsct of the paramelers con-
ditioned on the remaining paramecters, or at least morc efficicntly than an cxhaustive search. An
archetypal cxample of this approach is Rifc and Boorstyn’s [S1]. This reduces thc parameter
estimation problem for a single tone in noise, which involvcs the estimation of three paramc-
ters, 10 an optimization prohlem involving only the frequency of the tone.

In general, supposc that we wish to maximizce a likclihood function of the form

p(r|©) (3.20)



where 7 is some data and O is a set of parameters we need to optimize over. If the paramcter set
canbc split © = (6, 0>) such that optimization over 6, given f2 can be carried out analytically
or at least very efficiently, then the optimization problem can be efficiently carried out as:

6, = argrnaxp(r[Oz,él(Og)), 3.21)
92

where X
0.(02) = argmax p(r|02.0,), (3.22)
(3}

and é] = é] (éz)

We now consider sufficient conditions under which conditional optimization leads to a re-
duction in decoding complexity of space-time codes. Assuming that perfect channel state
information is available at the receiver, the received signal is given by

Y=HX+W (3.23)

where X is the transmitted STBC codeword with codc length 1" and entrics that are information
symbols drawn from an N-QAM constellation, H is the matrix of channel gains from the
transmit to the receive antennas and n is i.i.d Gaussian noise with zero mean and covariance
2021n, T.

The received signal can be written as

where x is the transmitted information symbol vector and H is the induced (equivalent) channel
matrix.
The likelihood function of symbols x given the received signal r is given by

1
p(r|x) x exp (— o9 [|r - a:H||2> : (3.25)

Taking thc prior distribution of symbols & to be uniform on the constellation C, we obtain
thc ML estimate:

x = argmax p(r|zx). (3.26)
mECb
ML decoding is certainly achieved with |C| computations of likelihood (3.25). but if the

symbols are taken from an N-QAM constellation then dramatic reductions in complexity are
possible.

Theorem 3 [If the induced channel matrix H has m rows which are mutually orthogonal, for
all channels H, then exact ML decoding can be implemented with complexity O(N* =),

Remark 3 It follows that in all cases the complexity of exact ML decoding is at most O(N Lot ).

Proof: LectH, be the sub-matrix consisting of m mutually orthogonal rows of the induced
channel matrix H and lct H2 be the matrix consisting of the remaining rows. We can then
rewrite (3.24) as

r=xH)i+x2H2+n (3.27)
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where x; is the 1 x m vector of complex symbols corresponding to the rows in H; and x,
consists of the X' — 1n remaining symbois. The likelihood function associated with (3.27) is

1
p(r|Ti, x2) x exp (_ﬁ |7 =z Hy — :1:2'H2||2) : (3.28)

We have isolated 1, as our approach is to maximize the likelihood function (3.28) with respect
1o T; given a2, and then maximize the resuiting partially optimized likelihood function with
respect Lo 2. Now since the rows of Hy are mutually orthogonal

HiH! = D, (3.29)
where D = diag(d?, -+ ,d2,), and d, is thc norm of the % row of H,. The likelihood
function (3.28) can then be written as

1 =
p(r|z1, T2) < exp (—ﬁ(r —x2H3) (I -HID "H;) (r — :z:z'Hz)*)

& (3.30)
X exp (— 357 jz:ldﬂr, - .ij(a:-z)|2> ,
where
E1(x2) = (r — x2H2)H[D™. (3.31)
Thus, given x>,
zi(x2) = (QF1(z2)), -+, QT m(x2))), 332

= Q(z1(x2)),
maximizes (3.30). Substituting (3.32) into (3.30) wc obtain the optimization probicm for z;:

Z2 = argmin [r — &1 (x2)H) - zo M), (3.33)

sznl\&, m

which can be substituted back into (3.32) to obtain the ML estimate of x;

1 = z1(Z2). (3.34)
Thus, cquations (3.33) and (3.34) provide an algorithm for obtaining the ML estimate of x;,7 =
1,..., K, which involves at most N% =™ evaluations of the right hand side of (3.33). [ |

We sce that for codes satisfying the conditions of Theorem 3, conditional optimization re-
duccs the scarch for the ML estimate to optimization of the objective function in (3.33) over the
symbols in 2. This reduced search can be carricd out by any means, in parallel, sequentially,
by tree scarch and/or using sphere decoding. We will further clucidate its relation to sphcre
decoding in Section 3.5. For non-squarc QAM see Rcmark 2.

Remark 4 If x| and x, are vectors of real symbols, then the above analysis holds with the
Jollowing modifications. Firstly, in Theorem 3 “nminal orthogonality™ of the rows of H (see
Egnation (3.29)) is replaced by the condition

HyH + Mol =D. (3.35)
Secondly, Equation (3.31) is replaced by

&1 (x2) = (rm +rHb — (MM + HzHI)> D' (3.36)

(Here ~ denotes complex conjugate.)



3.5 Relationship to Sphere Decoding

The idca of sphere decoding is to search only within a spherc or ellipsoid of a certain size
defined by the induced covariance matrix and the SNR. Suppose for a given decoding we have
determined that we need only search symbols that lie within the ellipsoidal region S ¢ CN,
defined by thc equation

S: zR'z' <p, (3.37)
where R is a diagonal positive definite Hermitian (symmetric, if a is real) matrix and p > 0.
Having decidcd on a sphere the reduced decoding problem becomcs

x = arg max p(r|x). (3.38)

TECKNS
In Theorem 3 we split the code vector x into two parts, o, associated with the m mutually

orthogonal rows of H, and x associated with the other &' — m rows of H. Let x be a general
veetor in CX and definc Uy : CK — ¢cK-m by

ZUZ =2, (3.‘;9)

so that 11, = l’zlfz" is the orthogonal projector on the “x 2™ subspacc. Similarly, we can define
an orthogonal projection I1; = (.’1(7,'r onto the “x," subspace. If x € S, then &, is contained
in the region

Sn, : T2 (U;‘R"(’z) xl < p, (3.40)
where UJR ™'V, € CK—m)x(K=m),
The optimization problem for x> thus reduces to

Tz =  argmin lr — &1(x2)Hy — z2H2))? . 341
1‘26(‘" ”'ﬁ5n2

o o
a
B
3
° o
L ]

Figure 3.1: Relationship to sphere decoding



The situation is illustrated in Fig. 3.1, where the axes laheled x, and x> represent the two
suhspaces defined by the orthogonal projections I1; and I15. The grey points represent the
projection of the full constellation C* onto the 112 subspace. The projected constellation is
searched over the projection of the sphere S onto the subspace T, that is Sp,.

Clearly, the mcthod of conditional optimization can he naturally integrated with sphere de-
coding in a simple way leading to a spherc decoding algorithm with worst case complexity
corresponding exactly to that of our direct algorithm in (3.33)~(3.34), that is O(|C|*~™).

3.6 Fast Decoding of the Golden Code

It has been shown recently that the ML decoding complexity of the Golden Code is cubic in
the size of the underlying QAM constcllation for an arbitrary N -QAM constellation [46, 52].
In Chapter 4 we show that if a square QAM constellation is used then the complexity of exact
ML decoding is further reduced to O(N2v/N). Here we apply the conditional optimization
approach to the Golden Code to obtain a simple approximate quadratic complexity decoding
algorithm with essentially ML performance. For a large constellation, this is a significant re-
duction in complexity when compared to O(N"’\/N). The algorithm can be employed by
mobile terminals with either one or two receive antennas and it is resilient to near singular-
ity of the channel matrix. Dual use is an advantage, since therc will likely be some IEEE
802.16 mohile terminals with one rcceive antcnna and some with two antennas. The key to
the quadratic algorithm is a maximization of the Iikelihood function with respect to one of the
pair of signal points conditioned on the other. This choice is made by comparing the determi-
nants of two covariance matrices (or equivalently, the norm of two channel vectors), and the
underlying gecometry of the Golden Code guarantces that one of these choices is good with
high prohability.

3.6.1 Model and Decoding Problem

The Golden Code is a 2 x 2 block space-time code that employs 2 transmit and 2 reccive an-
tennas and encodes four complex QAM symhols over two time slots yet achieves full diversity
[22, 53, 54] and is incorporated in the IEEE 802.16 standard. As described in Section 1.5.1 the
codewords in the Golden Code take the form

X - a 0 T +7r2 I3+ TI4
TA0 a) \i(xs + pxs) 1 + pxe
a 0 T I3 T 0 T2 X4
= (0 a) [(irs 1‘1) = (0 u) (il‘4 T2)]

where {x iy fEiese Z[i) are transmitted symhols, and C is a signal constellation taken to be
2™~ QAM. The parameters 7 = (1 + +/5)/2 and i = (1 — v/5)/2 are the Golden Ratio. The
diagonal matrix diag[a, @] where a = (1 + iu)/V5,a = (1 + it)/V/5 serves to equalize
transmitted signal power across the two transmit antennas.

(3.42)

Let (riy.ri2) and (721, r22) he the two received signal vectors at the first and second receive
antennas and the components are the signals received over two consecutive time slots. The
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received signal can be represented as

" I I3 T2 T4
(r11.712) = (ahi1,ah2) (irs Il) + (Thiy, phar) (im 12) + (11, n12),

. (3.43)

2 Iy I3 T2 I4
(7‘2|,7‘22) = ((Yh]z,(‘t’lzz) (i(l‘;; 1-1) + (T’Lm,/t’)zz) (i1'4 5172) + (1112,1122).

wherc n,; are complex Gaussian random variables with zero mcan and variance 20°. Equa-
tion (3.43) can be rewritten as:

ahyy ah Thiy pthy
(r11,712) = (21, 23) (iahl;l ahﬂ) + (x2,4) (i/thz] ,Th“) + (n11, m12),

(3.44)
ahyy aha Thia /11122
(r21,722) = (x1,73) (iahzz ahlz) + (22, 24) (ilthzz Thiz ) T (n21, 022).

Given that the channel gains h;; are known at the receivers and cach symbol is transmitted
with equal probability, optimum decoding is provided by the maximum a posterior MAP/ML
estimate as follows. We can rewrite (3.44) as

r=cH+sG+n (3.45)
where
r=(r1,ri2,721,722), N = (N, M2, 021, 022), c=(x,r3), $= (r2, x1).
H = (!h“ (!h.z] !1’1.12 thz g B (‘1Th.|1 (ly.hzl (‘1T1112 (‘1/1’122
~ \iahy ahir tahz ahia ) — \taph21 athi taphz: athiz

(3.46)

The likelihood function of codewords c and s given the received signal 7 is

p(rle, 8) x exp <—% [lr — cH - sgi|2) 3 (3.47)

Taking the prior distribution of thc symbols ¢ and s to be uniform on the constellation C, we
obtain the maximum likelihood estimate:

(¢, 8) = argmax p(r|c. s). (3.48)

c.8€C2

3.6.2 Quadratic Decoding of the Golden Code

In this section we show that decoding the Golden Code with essentially ML performance can
be achieved with a simple algorithm which is quadratic in size of the undcrlying QAM signal
constellation. Our approach is an cxtension of ideas used to derive the fast optimal algorithm
for multiplexing orthogonal designs described in the Section 3.3.
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Optimal Decoding: O(N?)
We begin by rewriting (3.44) as
r=aih+xH+n (3.49)

where 7 is defined in (3.46), ¢ = (12,23, 74), h = (ahy), &h21, ahi2, ahgs) and

_ athyy aphar athia aphas
H=| iahay ahyy idhyy aha]. (3.50)
iaphar athy iaphae athiz
The likelihood funetion associated with (3.49) is
1 ~[12
p(r|z1, x2, 23, T4) X exp <_ﬁ ”r —x1h - z’H” ) . 3.51)

We have isolated @1, as our approach is to maximize the likelihood with respeet to x; given .,
and then maximize the resulting partially optimized likelihood with respeet to . To this end,
we rewrite (3.51) in the form

ol 450 (—2%2(1» ) (14 = ﬂ) (r— zﬁ)*)

R
IR . o
- 2
X €xXp <_W lzr = T ()| ) )
where ||k||? is a Euelidean norm and
- rh! — zHA!
() = —————— (3:53)
lII1®
Thus, given x,
21(x) = Q(Z:(x)), (3.54)
maximizes (3.52).
Substituting (3.54) into (3.51) we obtain the optimization problem for x:
e 2
T = arg min Hr —xH - il(z)hH x (3.55)

zeC3

The ML solution is then (zy, 12, x3.24) = (Z1(&).&). Thus (3.54) and (3.55) provide an
algorithm for obtaining the ML estimate of x,,i = 1,...,4, which involves at most N*
evaluations of the right hand side of (3.55) since there are N3 possibilities to choose the symbol
set (22, x3,74) and O(1) complexity for ealeulating the symbol z; from (3.53) and (3.54).
Thus we have an algorithm with ML performance with a complexity O(N?3), where N is the
size of the underlying QAM constellation.

Optimal Decoding: O(N*V/'N)

See Section 4.4.1.



Essentially Optimal Quadratic Decoding: O(N?)

Consider the likelihood function given in (3.47). We can optimize (3.47) in two steps, i.e. first
maximize with respect 0 8 given ¢ or vice versa. Suppose we maximize with respect to s
given c. We first write (3.47) as

p(r|c, 8) x exp (— Q_:IZ(T - cH)(14 - g*(gg')"g)(r - CH)f)
| (3.56)
X exp (-ﬁ(s - 3(c))GG (s — s(c))*>
where
s(c) = (r - cH)GY(GGNH . (3.57)

We now make what is essentially a zero forcing approximation, since GG' is not generally a
multiple of the identity. We take

3(c) = Q(3(c))

" > (3.58)
= (Q(51(¢)), Q(52(c))),
Substituting (3.58) into (3.47) we thus estimate ¢ and s as follows:
¢ = argmin |r — ¢H - 3(e)G|?. (3.59)
ceC?
8 =Q(5(e), (3.60)
where 3(c) are given in (3.57).
Alternatively, if we reverse the roles of ¢ and s, we obtain the estimate
3 = argmin ||r — &(s)H - sG|°, (3.61)
seC?
e=1Qi(el3)) (3.62)
where
é(8) = (r — sGYH' (HH") !, (3.63)
and
¢(s) = Q(&(s)). (3.64)

Thus, we have two possible decoding solutions (3.59) and (3.61). Of course, if HH' and
GG' were multiples of the 2 x 2 identity matrix, both optimizations (3.59) and (3.61) would be
exact ML, and we would not need to make a choice. However, as we are making a zero forcing
approximation, we need to choose the best alternative for each channel. In order to make the
best choice, let’s first consider the following covariance matrices

b b
HH' = ((f a) 66! = (_‘;}. n) (3.65)

where
a = |af? Jh])? + |a)? |[h2)® (3.66)
a = lal?[|h1)l* + [a]? |h2)?
b= —iaa"(hi1hyy + hi2hdy) + aa” (ha i}y + haahip)
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where ||h.||* = |ha|? + |hi2|2. The accuracy of the quantization in (3.60) and (3.62), de-
pends on both the determinant (which determines the SNR) and the eondition number (whieh
determines the aceuracy of the zero forcing approximation) of HH' or GG'. The following
compares the determinant and the condition numher of HH' and QQ*.

HH! gg'
Determinant | a2 — o>  a® — |b]?
Condition Number | v = Zf—::: ¥= Zi—::ll

Fortunately, it ean he seen that for HH' and GG! the matrix with the largest determinant
also has the smallest eondition numher. Thus, we have a clear choicee: i.e. if

det(GG') > det(HH"), (3.67)

then we estimate ¢ and s using (3.59), otherwise, use (3.61).
The eondition (3.67) is equivalent to @ > a, which in turn reduces to

IBall* > lR2]l? . (3.68)

The simulation results presented in Fig. 3.3 show use of our fast decoding algorithm involves
little loss in performanee eompared to the optimal ML deeoder. We gain some understanding
of why this is by examining the joint behavior of the condition numbers for HH' and g1, v
and 7. We find empirically that for i.i.d. Gaussian channel coefficients, although the eondition
numbers v and 5 ean individually be large, the minimum of the two (min(+, %)) has a very high
probability of being small. Fig. 3.2 shows the distribution of min(+y, %), for 10° realizations.
The largest value of min(, ) obtained in the 10° realizations was approximately 17.5. This
corresponds to aratio of the lengths of the major and minor axes of the noise ellipse of V17.5 =
4.18.

Note that the minimum eondition number is not hounded above. If equality holds in (3.68)
then there is a common condition number, and when the magnitudes of the ehannel gains are
approximately equal, and their phases are aligned, then this condition number can be made
arhitrarily large. This however is a very improbable event.

To sum up, the algorithm involves one of two possihilities:

If [lhe]* 2 [l2])?

& =argmin |r — ¢H — 3(c)G|)°,

ceC?
8 = Q(3(c)).
otherwise,
§ = argmin v — &(s)H — sG|*,
seC?
& = Q(&(8)),
where

3(c) = (r —cH)G'(Gg") ',
(s) = (r — sQ)YH (HHH) .

o
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Figure 3.2: Empirical distribution of min(~y, %)

This algorithm involves only N? evaluations of the argument of (3.59) or (3.61) comparcd to
the O(N?) ML algorithm. As the simulation result shows in Figurc 3.3, the loss in performance
compared to ML is negligible.

The algorithm works equally well when there is only one receive antenna. In this casc the
decoding problem becomes

r=ch+sg+n, (3.69)

where r = (711,712), n = (n11,n12) and h, g are defined in (3.44). The algorithm applies
with h, g in place of H, G.

3.6.3 Simuiation Resuits

We compare the performance of the fast dccoding algorithm (Quadratic Decoder) described
in the last section with the ML decoder. The channel is assumed to be known at the receiver.
The elements of the channel matrix are modellcd as samples of independent complex Gaussian
random variables with zero mean and variance 0.5 pcr real dimension. The noise is complex
whitc Gaussian with zcro mean and variance 202, The signal to noise ratio at a reccive antenna
is defined as

>
SNR(dB) = 10log,, (2’7> . (3.70)

where P, is the (average) signal power per symbol at a reccive antenna which is defined as
Py = Ey(IHI* + 161%), 3.71)

and K, is the average cnergy per symbol.

Figure 3.3, shows the symbol error rate for 4-QAM and 16-QAM as a function of SNR. The
simulation shows that in both cases thc performance of thc Quadratic Decoder is essentially
optimal (ML decoder).
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Figure 3.3: Performance comparison between the MAP/ML O(N®) decoder and the quadratic
decoder for 4-QAM and 16-QAM

3.7 Fast Decoding of 3 x 3 Perfect STBC

Oggier ct al.[7] introdueed the perfeet spaee-time block codes whieh satisfy all of the following
criteria: full-rate, full-diversity, non-vanishing determinant, good shaping and uniform average
transmitted energy per antenna. These codes are constructed for2 x 2,3 x 3,4 x 4and 6 x 6
MIMO systems. An example of a 2 x 2 perfect STBC is thc Golden Code [22] described in
Section 3.6. The eonventional ML deeoder for perfeet STBCs with an N-QAM or N-HEX
constellation is based on an implcmentation of sphere decoding. Although there is no report
on the deeoding eomplexity for other perfcct codes, it is expected that when the ehannel matrix
is close to singular, the preprocessing stage of the sphere decoding algorithm will yield a plane
of possibilitics rather than a single initial estimatc. When this occurs, the lattice point search
degencrates to an exhaustive scarch.

In this Seetion we show that the approaeh deseribed in Seetion 3.6 ean be applied to ohtain a
fast decoding algorithm for 3 x 3 perfeet STBCs which gives esscntially ML performance with
suhstantially reduced complexity. This approach ean be also applied to other perfeet STBCs to
obtain low complexity decoding with esscntially ML performance.

3.7.1 Model and Decoding Problem

Consider the eodeword matriees of the perfeet STBCs for 3 x 3 MIMO systems which we write
in a form that will assist in the development of our algorithm. The perfeet 3 x 3 STBC transmits
nine complex (usually N —HEX constcllation) information symbols {z;}{_, ovcr three time
slots from three transmit antcnnas. The transmit codewords of the 3 x 3 perfect STBC can be
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expressed as

3 T3i+1  T3i42 T3:43
S Z Bioy | Jxsies T3 Taeez || (3.72)
im0 JT3i4v2 JT343 Tl
where the diagonal matrices B, are
Bi=(1+3j):+6
By = (=1 - 2j)I5 + j©* (3.73)
Bs = (-1-25)I3 + (1 + j)© + (1 + 5)©?
with © = diag(8,02.04),0, = 2cos(2'n/7). § = ¢>™/* and B, satisfy
Tr(B; Bl = T6jm. (3.74)

Assume that the channel state information is available at the receiver. Let A,; be the channel
gain from transmit antenna 7 10 a receive antenna j, then the received signal is given by

Y=HX+W (3.75)

where
hir har ha

H=]hi2 ho has | . (3.76)
hiz hos has
Equation (3.75) can be rewritten as
r = (r1, 22, 23)Hy + (X4, 25, T6)H2 + (27,28, 29)Hs + 1 (3.77)

where r = (r1, 72, r3) contains the three reccived signal vectors, v, = (741, 742, 723 ) With the
component r;, representing the received signal at antenna ¢ in time slot j. The noise n isi.id
Gausian noise with zero mean and covariance 202 /5 and

My = (IH,G1,Ch).He = (Ha, Go, C). Ha = (H3, G5, C3), (3.78)

where /1,, (7, and C; are induced channel matrices from the three transmit antennas to the first,
second and the third reccive antenna respectively. Explicitly

bihir bizhar bishar
H, = | 3bishar bithiy biahay | | (3.79)
Jbizh2r jbishay bahi
and similarly for G, and ",. The induccd channel matrices My, H 2, H3 have the following
property which is the basis of our fast decoding algorithm
HiM] + HoMD + HaMY = T|H|L L. (3.80)

That is Z:‘ i ’H{HI is a multiple of the identity. A similar property of the induced channel
matrices holds for all of the perfect STBCs, including the Golden Code. In fact, our fast
decoding method will apply to any STBC with structure giving rise to a relation of the form
(3.80).
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3.7.2 Low Complexity Decoding Algorithm
Letc = (x1,72.73),8 = (24, Ts5,T6), ¥y = (T7,Ts, To), We can rewrile (3.77) as

r=cH, +sHa+yHsz + n. (3.81)
The likelihood function associated with (3.81) is

1
p(rle, s,y,) x exp (—m lr — cH1 — sH2 — y’H3||2) ] (3.82)

Based on the conditional optimization described in Section 3.4, we first maximize (3.82) with
respect to s and y given c.

1 B
p(rle, s, y) x exp (—Fr (Ig —H(HH)) 1’}-(1) ,-/f)

] (3.83)
oxp (= gz (e &o,9) Hae] (e~ 2(5,9))')
where 7’ = v — sH, — yH3, and
&(s,y) = (r — sHy — yHa)HI(HH) L (3.84)

We now make what is essentially a zero forcing approximation, since ’H{H: is not generally
a multiple of the identity. We take

¢(s,y) = Q(&(s, ) = (Q(Z1(s, ¥)), Q(Z2(s, ¥)), Q(Z3(s, y))). (3.85)
Substituting (3.85) into (3.82) we thus estimate ¢, s and y as follows:
(3,9) = argmin |7 — &(s,y)H1 — sH2 — yHs|?,
s yeC (386)
&= Qe(s,9))

where &(s, y) is given in (3.84).
If we first maximize (3.82) with respect to ¢ and y given s we obtain the estimate

(é,9) =argmin||r — ecH1 — 5(e,y) — y’H3||2 -

cyec (3.87)
§=Q(3(¢,9)
where
s(e,y) = (r — cHy — yHa)HLU(H2HL) (3.88)

Alternatively, if we maximize (3.82) with respect to ¢ and s given y we obtain

(¢,8) = argmin|jr — cHy — sH2 — y(e. 8)Hal?,
caec (3.89)
v = Q(y(¢ )

where
H(c.8) = (r — cHy — sH2)YHI(HaH) ™. (3.90)
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Equations (3.86), (3.87) and (3.89) each provide an algorithm for obtaining the estimate of
x,,1 = L....,9, each of which involves at most N evaluations of the right hand side of
one of (3.86), (3.87) and (3.89). Now, we have three possible decoding solutions. Of course
if’H.’H{,’Hz’H; and H'{H;T; were multiples of the identity matrix, all of the optimizations
(3.86), (3.87) and (3.89) would have exact ML solutions and we would not need to make a
choice. However, as we are making a zero forcing approximation, we need to choose the best
alternative for each channel. One approach is to compute all three alternatives and take the
alternative which maximizes the likelihood. The key to the current algorithm is that due to the
structure of the code one of the three estimates is good, i.e. essentially ML, with very high
probability. The accuracy of the quantization depends on both the determinant (which deter-
mines signal to noise ratio) and condition number (which determines the accuracy of the zero
forcing approximation) of’H{HI 5 HzH; or ’Hs’H;. Fig.3.4 shows the empirical distribution
of min(y;, 72, y3) for i.i.d Gaussian channel coefficients, where -, v2, 3 represent the con-
dition numbers. This shows that although the condition numbers can individually be large, the
minimum of the three has a very high probability of being small.

We can reduce the computation by a factor of three by deciding on one of the three estimates
based on the channel. A possible criterion is to choose to quantize the varniables corresponding
to the H; with the largest value of dct(’H]’H;). Another choice is to quantize the variable
for which the corresponding matrix ’H,’H; has the smallest condition number. For the Golden
Code these two criteria are equivalent, but here they are not. We have found experimentally that
the former criterion is just slightly better and obviates the need to compute all three estimates
The algorithm can be summarized as follows:
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Let det(H) = max[det(H; M), det(H M), det( HaHL)).
If det(H M) = det(H)

(5,9) = argmin ||r — &(s,y)H,1 — sHo — yHas|?
s.yel

¢ = Qe(s 9))
clseif det(HoHY) = det(H)
(¢, 9) = argmin |jr — cH — 8(c,y)H> - yHs||?
c.y€eC
8 =Q(3(¢,9))
otherwise
(€,8) = argmin||r — ¢H1 — sHa — §(c, s)Hsl|*
c,s€C
y = Q(y(c, 8))

where ¢, 8, y are given in (3.84), (3.88), (3.90) respectively.

The perfeet STBCs are constructed in terms of information symbols, either a QAM or HEX
constellation. This means that the computational complexity of the quantization step is O(1).
Therefore our algorithm involves at most N® evaluations of the likelihood function. We com-
pare the performance of the fast decoding algorithm described above with the ML decoder for
a 3 x 3 perfect STBC. Figure 3.5 shows the symbol error rate as a function of SNR using
a 4-HEX constellation for a Rayleigh fading channel model. The result shows that our fast

decoder is essentially a ML decoder with complexity O(N®).
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Chapter 4: Fast Decodable Space-Time Block Codes:
General Theory

In this chapter we consider how to write linear dispersion codes and in particular, the perfect
STRBCs, in a way that makes the decoding structure clear. 1t will become clear that the per-
fect STBCs can be considered as multiplexed quasi-orthogonal designs. Application of the
conditional optimization approach devcloped in Chapter 3 lcad to fast exact ML decoders.

Consider a MIMO communication system with n, transmit antennas and n,- receive anten-
nas. The transmitted signal matrix X € C™ T and the received signal matrix Y € C"*T
are related by

Y =HX+W (4.1)

where H € C" " denotes the channel matrix with entry h,; representing the fading coef-
ficient associated with the transmit antenna 7 and receive antenna j. The channel coefficients
are i.i.d. circularly symmetric complex Gaussian random variables with zero mean and unit
variance. W € C™*T denotes the complex additive white Gaussian noise with i.i.d. en-
tries W,, ~ CA(0,20?%). We assume quasi-static flat Rayleigh fading where the channel
coefficients are fixed for the codeword duration i.e. for 1" symbol periods.

4.1 Linear Dispersion Codes

Let {rk}f.Kl be a set of real scalar symbols which are selected in pairs from some constella-
tion. A linear dispersion (LD) code {34] is a space-time code in which codeword matrices are
obtained as linear combinations of certain basis matrices according to

2K
X = Z T A, (4.2)
k=1

where {Ax}#%, € €T isa set of complex matrices. If the x roam over all of R this is the
real linear span of the matrices A and as such is a real vector subspace of C"* *7T_ That is, a
subspace of C"* *T which is a vector space over R. We denote this space by V.

Note that LD codes encompass all possible linear space-time codes. Substituting (4.2) into
(4.1), the received signal vector y can be written as

y=zH+n 4.3)
where © € R™ is the transmitted information symbol vector, and H is the induced channel
matrix

h1A1 h2A1 hn,Al

H = ; : ; ] (4.4)
hiAsg hoAak ... hy, Aok

where by = (his, hos, oo huga).
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4.2 Algebraic Properties

In this section we look at some algebraic properties of an LD codes which leads to a fast ML
decodable property. We begin by recalling the definition of an orthogonal design.

Definition 2 If an LD code (4.2) is an orthogonal design then for alt k,l = 1, ..., 2K,

AkA{ + A[A{ = 011\-(51\-‘(1, ag > 0. 4.5)
There are many codes which are not themselves an orthogonal design but do have subcodes
which are orthogonal designs. Following [9] we refer to these codes as having embedded
orthogonality. More precisely:
Definition 3 An LD code (4.2) is said to have embedded orthogonality of order m if some

subset of size m of the matrices Ay, satisfies (4.5). For such a code we can relabel the Ay, and
write (4.2) as

2m 2K
Xe= Z.’L‘k/h- e Z T Ag (4.6)
k=1 k=2m+1

where { Ay }3™, satisfies the condition (4.5).

Definition 4 An LD code (4.2) is a (2K, d)-Quasi-Orthogonal Design ({2 K, d)-QOD) if there
is a partition of the set of integers {1, ..., 2K} into 2K /d sets S, . .., Sz q, each of size d,
such that

1. Foreachj € S¢andm € Sy, with { # €,

A AL+ AnAl =0, (4.7
2. Forallt=1;..+.;2K/d

> A AL = aelu. (4.8)

JES,

Note that a (2R, 1)-QOD is an orthogonal design.

Definition § An LD code is said to have embedded (21, d)-quasi-orthogonality if some subset
of the matrices Ay of size 2m satisfies the conditions (4.7) and (4.8). For such a code we can
relabel the Ay (and x1 ), and write (4.2) as

2m/d ed 2K
X = Z Z Tk Ak + Z i Ag, “4.9)
=1 k=(f€-1)d+1 k=2m+1

where {Ay}i™, satisfies the (2m, d)-QOD conditions with partition S¢ = {(€ — 1)d +
1,.... 6}, fort=1,...,2m/d.
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4.3 Fast Maximum Likelihood Decoding

Consider the received signal given in (4.3). The likelihood Tunction of symbols & given the
received signal y is given by

1
p(ylx) «exp{—%; ly —mHu?}. 4.10)

The maximum likelihood cstimatc of x is:

z = arg max p(y|z). 4.1
€T

1f an LD code X in (4.2) is an orthogonal design then the ML decoding problem for o, & =
1,..., 2K decouples into 2K real parallcl sub-channels.

Theorem 4 If a linear dispersion code of the form (4.3) has embedded orthogonality of order
m then exact ML decoding can be implemented with complexity O(N*~™) for square N-
QAM and with complexity O(NK -+ 1) for a general constellation.

Remark 5 It follows that in all cases the complexity of ML decoding is at most O(N’" SN
square N-QAM.

Proof: Suppose our code X has the form (4.6). Write zy = (x1. - , 22, ) and T2 =
(Z2m+1, -+, T2k ), and decompose (4.3) as

y=zHi +z2H2 + 1. 4.12)

The likelihood function associated with (4.12) is

1
p(ylwnwz)Xexp{-rﬂlly—wmu —wszllz}. (4.13)

We have isolated x 1, as our approach is to maximize the likelihood function (4.13) with respect
to x, given T2, and thcn maximize the resulting partially optimized likelihood function with
respect Lo To.

Since the matrices {Ax, k = 1,..., 2m} satisfy the condition (4.5),

M+ HaH = D, (4.14)

where D = diag(ay, -+, a2m), the likelihood function (4.13) can be written as

Plyler.za) x exp{ — 5 (y - 2Ha)(y - 22Ha)'

202
1 2m g 2m 5 5 (4 1 5)
- j .
it 102 ]X;”JL’-J(“’?H } HOXP {‘mi% - T;(x2)| } ,
where .
&1(x2) = (ym +y M - (MM + ﬂm{)) e (4.16)
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Thus, given a3, the ML decoding problem for o deeouples into m parallel sub-decoding
problems. We have

&1 (z2) = (Q(Z1(22)), -+, Q(Em(T2))) @17

= Q(&1(x2)), '
where Q denotes the ML decoder for the sub-decoding problems. For square N-QAM the ML
decoder Q is just quantization which has eomplexity O(1). For a general constellation Q will
involve a search with linear eomplexity in the size of the constellation. Substituting (4.17) into
(4.15) we obtain the optimization problem for x3:

&2 = argmin |ly — Z1(x2)H) — x2H-||%, (4.18)

x

which ean be substituted back into (4.17) to obtain the ML estimate of =,

(i)] =:i:1(m2). (4]9)

Thus, (4.18) and (4.19) provi@c an algorithm for obtaining the ML estimate of z;,¢ = 1,..., 2K,
which involves at most N =™ evaluations of the right hand size of {4.18) for square N-
QAM. For a general constellation we need to evaluate (4.18) NE=™ times and cach evalu-

ation involves 2m parallel searches through N alternatives to give an overall complexity of
O(‘;Vk'-nH-l) ]

Theorem 5 If an LD code (4.2) has embedded (2m, fi)-quasi-orrlxogouali!y. then exact ML
decoding can be implemented with complexity O(N" S 2y for transmitted symbols

taken from a square N-QAM constellation while for a general constellation the complexity is
O(NK rn+d).

Proof: Writexe = (T(o-1yds1, - +Tea), € =1, . 2mand Tami1 = (Tama1. ¢, T2K).
Then we ean rewrite (4.3) as

2m/d

y= Y @He+TamsiHmer + 7. (4.20)
£=1

The likelihood function associated with (4.20) is

1 2m/d 2
p(yl{zxe}, T2ms1) x exp = =1 Z zeHe — Tamr1Ham+s . 42n
e=1

Now since the matrices {Ax, k = 1, ,2m} satisfy the eondition (4.7) then, for ¢ # ¢,

HoH!, + HHE, = e 422
4 [/+ e - Od Md . (.)
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where My is a d x d matrix and 04 denotes a d x d matrix with all elements are zero, and so
the likelihood function (4.21) can be written as

plyl{ze}, Tom 1)

1
X (*XP{ = ﬁ Y —T2my 1H2m+l)(y — T2m 4 |”.‘2m*1)t

2m/d
= = T
g 2 Te(T2m+1) (7‘117‘13 +7‘ie7‘i;) Te(Tame1) }
2m/d 1 S
X H exp {(—F(ml — Ze(Xami1)) (HeH! + HeH ) (xe - :irt(:lrfzmu))T},
=i

(4.23)
where, for ¢ = 1.---,2m/d,
jl(m2m+1)

o (yH} + yHI’ —T2am+ l(H2"l+|H; + H2vn§1H;)) (H[H; + H_[?'_t—;)

(4.24)

Thus, given T2m 41, the ML decoding problem for {x¢|¢ = 1,---,2m/d} decouples into
2m/d independent sub-decoding problems. We have

Zo(Tam+1) = argmin (Te—Ze(Tam 1)) (’He’H; + ’H/H}) (Te—Fe(Tam+1))". (4.25)
Ty

For a square N-QAM constellation the complexity of the above 2m,/d minimization is O(N (4~ 1/2)
using conditional optimization, while for a general constellation the complexity is O(N?).
Suhstituting (4.17) into (4.15) we obtain the optimization problem for @2, 4 1:

2
2m/d
Tomy) = argmin ||y — Z To(Tam1)He — TamrHamnr|| (4.26)
T2m+ 1 e
which can he suhstituted back into (4.25) to obtain the ML estimate of x¢
X = :ilf(.'iz,,hq). (=1,--- ,27”./d. 4.27)

Thus. (4.25) and (4.26) provide an algorithm for ohtaining the ML estimate of ;.2 = 1.+ -+ , 2K,
which involves at most N =™ evaluations of the right hand size of (4.26) for square N-
QAM, with each evaluation having complexity (9(1\4'(“'”"'2). giving an overall complexity
of O(NK-m+d=10/2y Eor a general constellation we need to evaluate (4.26) N5 =™ times
with each evaluation involving 2m /d parallel searches through N alternatives giving an over-
all complexity of Q(NHF-m+d), ]

Of course, we can apply this general theorem to reproduce the conclusions of Chapter 3 for
multiplexed orthogonal [S5] and quasi-orthogonal designs [56]. However, somewhat surpris-
ingly, this theorem also applies to the perfect space-time hlock codes of Oggier et al. [7] which
we will show below have the structure of multiplexed quasi-orthogonal designs.
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4.4 Examples

4.4.1 The Golden Code

Reeall that the Golden Code eodewords take the form

1 [a 0 Inl '1z3 740 T2 T4
- L AL R T R TP (4.28)

where a = (1 + ig) and & = (1 + i7). This ean be written in terms of a real LD eode as

8
Rei= E sk Ax (4.29)
k=1
with 81 = T\Rr,S52 = T17.83 = T2R,S54 = T2/,55 = T3R,S6 = T3I,57 = T4R, S8 = T4l,

where subseripts 7 R and ./ represent real and imaginary parts of symbol a,,, and
a 0 i 0 at 0 ot 0
i 0 & lifi= 0 > Al 0 op e = 0 iap
0 a 0 o 0 ar 0 iar
A = A = A = ,A = .
’ in0)7° B0, o 0 i —ap 0

We ean interpret the Golden Code as a multiplexed pair of (4,2)-QOD leading to a fast ML
decoder. To see this eonsider the matrices

T 0 01
= b and Z = i 0 4.31)

and note that 2% = I,. From 7 we can construct a pair of diagonal matrices

Bi=(1+)I—iT

(4.32)
By = -l + T,

whieh satisfy
Tr(B, B,) = 58;.m. (4.33)

Note that Ay = By, A2 = B12% = iBy, A3 = By, Ay = BaZ? = iBy, Ajya = A2,k =
1,....4. ltean be verified that the subsets { A }4_, and { Ax }}_5 satisfy the (4, 2)-QOD eon-
ditions (4.7) and (4.8) with partition {1, 3}, {2,4} and {5, 7}, {6, 8} respectively. Therefore
the Golden Code is the multiplexing of a pair of (4,2)-QOD with multiplexing matrix 2,

X = Xi(z1r, 2R, 11, T21) + X2(T3R, T4R, T31, T41) 2 (4.34)
where
4
xi(al,ﬂz,ag,(l.;) =) ZGA»AA». (4.35)
k=1



The received signal can be written as
r=x1H +x2H2 + n, (4.36)
where = (.’I']R.J‘gR.LI‘”..rzl),:l)Q — (1‘3R,.7?4R,.T31,.7741) and also
ab00o0
bc0O

00ab
00bc

HiH] + HiH] = = HaH} + Ho M) (4.37)

where a, b, ¢ are some constants. Theorem 5 implies that the Golden Code has ML decoding
complexity O(N?V/N) (see [57, 52|) for square N-QAM constellations using the decoding
algorithm of the last Seetion.

4.4.2 3 x 3 Perfect STBC

The perfect 3 x 3 STBC transmits nine ecomplex (usually N-HEX constellation) information
symbols over three time slots from three antennas. The eodeword of the 3 x 3 perfect STBC
can be expressed as

5 T3:4+1 T3:342 I3:143

X=2:BhLl JT3i43 T3yl T3ig2 | . (4.38)

] : ;
2 JT3:42 JT3:43 T34

where the diagonal matriees B; are

Bi=(1+)lz+8

B: = (~1 - 213 + j©?

Bs=(-1-2)l3+(1+ 70+ (1+j)6° (4.39)
with © = diag(;,02,03),0, = 2cos(27/7), j = €*™/* and B, satisty

Tr(B; B},) = T650m. (4.40)
Similarly, let
1 = (TR, TaR, T7R, 11, Tal, T71),

Ty = (T2Rr, T5R, T8R. T2, T51. T81),

T3 = (L3R, T6R, TOR, T31,T61, L9 ),

then the 3 x 3 perfect STBC (4.38) can be written as three (6.3)-QOD multiplexed as follows

X = Xy (x1) + Xo(x2) Z + Xa(xa) 22 (4.41)
where
6
X.(s1, 82, $3, 84, S5, S56) = ZSAAA-, (4.42)
k=1



010

z=|(001}, (4.43)
700
and
Ay = Bi,A2 + B2, A3 = B3, Ay = iB), A5 = 1 B3, Ag = iB;3. (4.44)

In this ease the received signal is given by
r=xH +x2H2 +xz3Hzs+ 1 (4.45)
and

M) + HiH] = oMb + HoHY = HaM) + HaH]

Ms; 03 (4.46)
=V Wi

Theorem 5 implies that the 3 x 3 perfeet STBC has ML decoding complexity O(N7) for square
QAM constellations.

4.4.3 4 x 41 Perfect STBC

The 4 x 4 perfeet STBC transmits 16 complex (N-QAM constellation) information symbols
{z:}18, over four times slots from four antennas. The eodewords ean be expressed as
Tait1l T4i+2 T4i43 Tdit+4
3 IT4i44 T4it1l Tai+2 Tait3
X = E Biyi |, ) g (4.47)
oy 1T4:43 IT4:44 T4ip1l T4e42

IT4i42 1T4i43 iT4it4 Taatl

where

Bi = (1 = 3i)l4 +1i0?

By = (1 - 3i)© +i0°

By = —ily + (-3 +4)0 + (1 —1)©°

Bs=(-1+44)l-30+06°+6°
with © = diag(01.62,03,04),0; = 2cos(2'7/15), and

Te(B;B},) = 158,m. (4.48)

Write

Z) = (T1Ry TSR, TR, T13R, T11, TS1, To1, T131),
T2 = ($2R-16R,IIDR,1‘14R,$21,$61,$101,$141),
x3 = (T3R, T7R, TR, TI5R, T31, T71, T111, 151 ).

x4 = (T4r, TR, T12R. T16R. Tal, Tal, T121, T161).
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The 4 x 4 perfect STBC (4.47) can be written as four (8, 41)-QOD multiplexed as follows

X = Xy (x1) + Xo(x2)Z + Xa(x3) 2> + Xa(4) 2>, (4.49)
where
8
Xi(s1, 82, 83,54, 85, S6, 57, 58) = Z’qkAkv (4.50)
k=1
0100
0010
== lgaed el
i 000
and

Ay =By, Ay = By, Aa = B3, Ay = By, As = iB), A¢ = iB2, A7 = iB3, As = iB,.
The received signal is
r=xyH)+x2H:+x3Hs +xc1Hs +n (4.52)
and

HiH] + HaH = HaM + HaM) = HaHb + HaH) = HaH] + M)

M,y 04 (4.53)
SN0y My’

Theorem S implies that the 4 x 4 perfect STBC has ML decoding complexity O(N'3v/N) for
square QAM.




Chapter 5: Space-Polarization-Time System

The performance of MIMO systems is highly dependent on the availability of a rich scattering
environment (e.g. densely urban and indoor) as well as sufficient antenna spacing to achieve
multiplexing or diversity gain. In rural and remote environments the wide open space and
flat or smooth undulating terrain give rise to LOS conditions dominating between thc trans-
mitter and the receiver and consequently to a loss of diversity. In order to achieve significant
multiplexing or diversity gain, many wavelengths spacing between antenna elements at the
base station, and up to a wavelength at a mohilc unit are required [58]. As the polarization
of transmitted signals is mostly preserved by the LOS cnvironment, the usc of dual-polarized
antennas (polarization diversity) is a promising cost and space effective alternative, where two
spatially separated uni-polarized antennas are replaced by a single antenna structure employing
orthogonal polarization. In this chapter we investigate the performance of various transmission
schemes for coding onto a dual polarimetric antcnna.

We begin with a brief overview of clectromagnetic polarization and polarimetic transmission
systems by following [59].

5.1 Polarization

Polarization is a propcrty of thc electromagnetic plane wave solutions of Maxwell’s equations.
In an infinite medium in which there are no sources, Maxwell's equations have so-called plane
wavc solutions of thc form

E(z,t) = Eet=wt), (5.1)
B(z,t) = Be'F @b, (5.2)

where ¢ denotes time, z € R? denotes a point in space and € and B € C>. The (angular)
frequency of the plain wave is w and k is called the wave vector of the planc wave. In order to
be solutions of Maxwell’s equations the following relations must hold

2

kok=pea, (5.3)
-

k-£€=0, (5.4)

k-B=0, (5.5)

B= \/[I.Fic x E. (5.6)

Equations (5.1) and (5.2) are a complex solution to Maxwell's equations. Physical solutions are
given by both the real and imaginary components of this solution. The unit vector k detcrmines
the direction of propagation of the plane wave. Equations (5.4) and (5.5) imply that the E and
B are in the plane perpendicular to the direction of propagation k. Furthermore, cquation (5.6)
implies that £~ and B are pcrpendicular to each other.

The concept of polarization of a plane wave is rclated to the nature of the vector £. Supposc
that €; and €; € R® are orthogonal real unit vectors which are hoth orthogonal to k, the
direction of propagation. Since £ is orthogonal to k,itisa complex linear comhination of €,
and €3

€ = Fie, + Faea, (5.7)




where E; and E are complex numbers. If the complex phases of £y and E; are equal, so that
E\ = |Ei|e’® and E; = |[53]€*?, then the real electric field is

E(x,t) = V|EI|? + |E2|?ecos(k - & — wt + @), (5.8)

where e is the unit vector

e = (|Erler + |Ezle2) /(VIE:|* + | E2

?), (5.9)

We see that in this casc the clectrie field oseillates between ++/|Fy |2 + |E2|? e always re-
maining parallel to e. In this case the plane wave is said to be linearly polarized in direction
e. In situations where the plane wave propagates parallel to the surface to the Earth, waves lin-
early polarized in a direction perpendicular to the Earth’s surface are called verrically polarized
and those linearly polarized in a direction parallel to the Earth’s surface are called horizontally
polarized.

Another important type of polarization occurs when |E;| = |E2| and the phase of E is
different from that of F> by £7/2 , so that B2 = +iE,;. The real electric field then has the
form

E(x,t) = |Ei|(e1cos(k -z —wt + @) F easin(k - T — wt + ¢)). (5.10)

Notice that here E just rotates around a circle of radius | £ | with angular frequency w radi-
ans/sec. Such waves are called circularly polarized. The two possibilities F in Equation (5.10)
correspond to the F rotating in opposite directions around the eircle. These two possibili-
ties are referred 10 as being left-llanded and right-handed ecireularly polarized depending on
the convention chosen. Finally, we note that a plane wave which is not lincarly or eircularly
polarized is said to he elliptically polarized.

5.2 Polarimetric Transmission Systems

The vector potential for a sinusoidally oseillating source (antenna), that is, a source consisting
of localized charges and current with charge and current densities of the form

plx, t) = p(x)e™" (5.11)
J(x, t) = J(x)e™ (5.12)

which is small compared to the wavelength is

tr1(kr- wt)

A(@,t) = ~ikp—— (5.13)

where for free space & = w/c and 7 is the distance between the transmitter and the receiver.
Here p is a possibly complex valued electric dipole moment of the source

p= /w'p(w')dw'. (5.14)
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The comresponding cleetric and magnetice fields are

whr—wt) ]
_ = i2 L gitiary O 5.15
B =V x A =k%(nxp) - (l ikr) (5.15)
i ghbr-stl 7, 1k
E = ZV XiIB'=— (k (nxp)><n+(3n(n-p)—p)<,—2 - 7)) (5.16)
% e :

where * = rn. In the far field or radiation zone (kr >> 1) this reduces to the limiting form

A (Ji(kr ~wi)
B=k (nxp)-——r— 5.17)
. Pt(k‘r—u()
E =k"((n x p) x n) — (5.18)
The electric ficld can be rewritten as
fl(k‘r—u;l)
Erkz(p_»(p-n)n)——r- - (5.19)

Notice that p — (p - m)n is the projeetion of the dipole moment p onto the plane perpendicular
ton. Atapoint £ = rn in space the electric and magnetic ficlds look locally like an outgoing
plane wave with polarization vector £ = p — (p - n)n.

For antennas which are small compared to a wavelength, which is often the case in mobile
wireless communication systems, we can imagine having three feeds into the antenna config-
ured in such a way that we have complete control over the dipole moment p of the antenna. For
a larger antennas, or for conereteness in the case of small antennas, we consider so-called triad
antennas. A triad antenna is composed of three orthogonal dipoles oriented along cuclidean
directions as shown in Figure 5.1. At the transmitter a triad antenna can generate an arbitrary
oscillating dipole moment and consequently an arbitrary polarized eleetrie field at the receiver,
subjeet only to the eonstraints imposed by the physics of the electromagnetic field. A triad
antenna at the receiver allows the receiver to measure the electrie field as shown in Figure 5.2,

The use of triad antennas allows us to think of this MIMO system in an unusual way. Instead
of thinking of the individual component antennas and the symbols eoded onto them at the
transmitter and read off at the receiver, we can think directly of coding onto a physical dipole
moment vector at the transmitter and measuring the resulting clectric field at the receiver.




Figure 5.2: A triad antenna system. Electric field (E) at the receiver is perpendicular to the
direction of propagation

A special ease of the triad antenna is the morc usual dual polarimctric antenna. A dual-
polarized antenna consists of two eo-loeated polarized antcnnas, typically horizontal/vertical
(0°/90°) or slanted (+45°/ — 45°) as shown in Figure 5.3. Thc signals, say z; and x>,
arc transmittcd on the two different polarizations, and r; and r; arc the signals reeeived on
the corresponding polarization. Note that, although there is one physieal transmit and one
physical receive antenna, the undcrlying channel is a two-input two-output channel since cach
polarization mode is treated as a scparate physieal channel.

90

45 45

Figure 5.3: Schematic of a dual-polarized antenna

5.3 Space-Polarization-Time System: Alamouti Signaling

Nabar ct al. [58] have studied the performance of a system with one dual-polarized transmit
and one dual-polarized reeeived antenna with Alamouti signaling and spatial multiplexing.
Deng et al. [60] have extendcd these results to the case of two dual-polarized transmit and
one dual-polarized received antenna with Alamouti signaling and proposed a partieular hybrid
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transmission scheme. In this section we further analyze Deng et al's system and investigate
the performance of two Alamouti multiplexing in the presence of polanization diversity and
compare with the performance achieved using a uni-polarized scheme and the hybrid scheme of
Deng et al. We analyze and predict the performance of the systems with different transmission
schemes by applying the parameter A developed in Chapter 2. The parameter A measures the
“quaternionic angle” between the two Alamouti channels.

5.4 MIMO Channel Model

Consider a MIMO wireless communication systcm with n, transmit and n, receive antcnnas.
The channel is assumed to have quasi-statie fading represented hy a n, x n, matrix H with
entries which are complex Gaussian random variables. The channel matrix can be decomposed
into the sum of an average (LOS) component and a variable (scattered) component as

K = 1 V2 g2
= S.
H ‘/l+1\’H+‘/1+KR' HR! (5.20)

where E{H} = /% H is the channel mean. The factor /% and /5% are cnergy
normalization factors and are related to the Riecan A —factor, with K being referred to as
thc K —factor. Note that X' = 0 corresponds 10 the case of a pure Rayleigh fading channel
and K = oo eorresponds to the case of a pure LOS channel. K = 10 is uscd to represent
the typical suburhan cnvironment of a personal communication system (PCS), with not very
high huilding density and partial LOS [60]. The clcments of thc matrix H are zero-mean
circularly symmctric complex Gaussian random variahles and unit variance. R; = R,'”R,l‘/zt
and R, = RY?RY?" are transmit and reccive correlation matrices. The LOS component H
is modelled as

H = 3a,a] (5.21)

where a; and a, are transmit and receive steering vectors and (3 is a complex gain. If the
transmit and receive antennas are uniform linear arrays with spacing d then

-amd 8 - - 1)d T
a, =(1’(‘ 1wd cos ,'“”f im{ng—1) (osli,)l

!
a, = (1, e irdcos @, A e-nr(n, —1)d cos 8, )'I' (5h2)

are the transmit and receive steering veetors respectively. We take H to be normalized such
that

Tr(H'H) = nen,, (5.23)

sothat |3] = 1.

5.5 Dual-Polarized Channel Model

Consider a system with one dual-polarized transmit and one dual-polarized receive antenna.

The 2 x 2 channel matrix
hvv hhv
H-= : (5.24)
hen han

6l




is a polarization matrix where h., and hw, represent path gain from vertical transmit to vertical
receive antenna and from the horizontal transmit to the horizontal reeeive antenna, respectively.
Similarly, A, and hyn, represent path gain from the horizontal transmit to the vertical receive
antenna and vice versa. The elements of the matrix H, which are denoted as h,; (2, j = v, h) are
zero-mean cireularly symmetric complex Gaussian random variables whose variances depend
on the propagation conditions and the antenna characteristics. We use the model given in [58],
that is

E{lha[*} = E{lhn|*} = 1
E{[hn|?} = E{hm|*} = 7,

(5.25)

where 0 < v < 1 deseribes the eross polarization discrimination (XPD) or separation of
orthogonal polarization for the variable component of the ehannel. ~ is a composite of the
properties of the antennas and the scattering environment (coupling between clements due to
scattering). Good diserimination of orthogonal polarization eorresponds to a small value of ~y
and vice versa. The elements of the matrix H, which are denoted as h,;, (4, j = vh), are fixed
complex numbers satisfying

[ = Ms® = L, [Bsl® = [Bssl® =45 (5.26)

where 0 < 75 < 1is related to the XPD for the LOS component. For pure LOS conditions,
vy is solely a funetion of the antennas’ ability to separate the orthogonal polarization.

It was stated in {58] that the experimental data collected in [61] and [62] shows that the
elements of H are, in general, correlated. The correlation coefficients are therefore defined as

,_ Blhwhi} _ E{hahin} | _ E{hwhi} _ E{hinhin)
VA N v Vi

where t is referred to as the transmit correlation coefficient, and r is the reeeive correlation
coefficient. The experimental data [58] also reveals that the eorrelation between the diagonal
clement matrix h. and hy, and the off-diagonal elements by, and Ay, is typically very small.
Therefore, for simplicity, we assume that

(5.27)

E{hwhin} = E{hnhi} = 0. (5.28)

Consider a two user system with two dual-polarized transmit and one dual-polarized receive
antenna, where each user employs the Alamouti STBC over a dual-polarized transmit antenna.
The equivalent polarization matrices from the first user to the first and second receive antenna,
can be represented as

hw hny hon Ben

Hy = . d Ha= ot ) .29

S T Al O T Gl

Similarly, the equivalent channel matrices for the second user to the first and seeond receive

antenna are

gw Ghv Gvh Ghh

Gi= « + ), and Go= P (5.30)
“9vh Gw ~9rh Gvh
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We consider three different transmission schemcs. The first is a uni-polarized system as
described in Scction 2, i.e. four vertically polarized transmit and two vertically polarized
receive antennas, all spatially separated as shown in Figure 5.4.

Ly
=5 5) |y

L
il

Y
w53 |y

Figure 5.4: Scheme 1:Uni-polarized

The LOS componcnts of the equivalent channel matrices arc modelled as

- 1o\ M2 p3\ iy ps\ e W7
Hy = " yHa = . . ]G = . ]:G2= PR | [P 3 )
-1 1 —[3 2 —l5 —17 e

where 1, 2, ..., p7 are arbitrarily chosen unimodular complex numbers that represent the
different LOS paths. Note that in this casc v = 1.

The second scheme consists of two dual-polarized transmit and one dual-polarized receive
antcnna and cmploys Alamouti STBC on cach pair of dual-polarized transmit antennas as
shown in Figurc 5.5.

N

E
Y

Figure 5.5: Scheme 2:Dual-polarized

This scheme will be referred to as the dual-polarized system and the equivalent LOS com-
poncnt channels arc modelled as

e (VT3 ﬁgﬁl G- m NaTlL a_\/ﬂu It
1= AT 1 , H2= —l\/‘W' 1= ST i ) 0= AT

(5.32)




where 2 is again a unimodular eomplex number. Under the assumption that the reeciver is
in the far field of the transmit antenna, then 1 = exp(—'z%n - &), where A is the earrier
wavelength, n is the unit veetor in the direetion of the reeeiver and A is the position of the
seeond antenna relative to the first antenna. Furthermore, sinee the two orthogonal components
of caeh of the dual polarized antennas are eo-loeated, their relative path difference is zero.
The third scheme is that proposed by Deng et al. [60]. 1t also consists of two dual-polarized
transmit antennas and one dual-polarized reeeive antenna, but employs Alamouti STBC on the

same polarization aeross the two transmit antennas as shown in figure 5.6.

I Vertical of 1% Tx
(57 |y
(1, 39) — - .
g Vertical of 27! Tx

»—.
— Horizontal of 1" Tx

: T3 &y
I3, Ty) — : 2
ry Iy

Horizontal of 2 Tx

Figure 5.6: Scheme 3:Dual-polarized hybrid

In this ease the equivalent LOS channel matrices are modelled as follows

o {1 B\ U TR o AW R o oA
‘le(_“. 1>,H2_-<_ﬁ“. ﬁ>,g,= (_ﬁu. \/7_]>,g2_<_“. ,). (5.33)

where ju is as defined above.

5.6 Analysis and Simulation

We now analyse the three transmission sehemes deseribed above by applying the parameter A
obtained in Chapter 2. We consider both the Rayleigh fading channel and the Riecan ehannel
where A = 10. In the simulation results reported here, the data symbols were taken from
an 8-PSK eonstellation and deeoded with the algorithm given in (2.42) and (2.49). For the
polarization sehemes we set the XPD parameters to v = 0.4 and vy = 0.3 and for correlated
ehannels, the transmit and reeeive eorrclation eoeffieients, as defined in (5.27), were ehosen to
bet = 0.5and r = 0.3.

Figure 5.7 illustrates how the angles between the channel matrices |A| are distributed for
an uneorrelated Rayleigh fading ehannel, for the three different transmission sehemes. Fig-
ure 5.8 shows the symbol error rate ohtained under the same ehannel eonditions. Figure 5.9
and Figure 5.10 show the eorresponding results for the ease of an uneorrelated Rieean ehannel
when K = 10. 1t is elear that the presenee of the LOS eomponent eauses the means of the | A|2
distrihutions to shift and the distributions to heeome more eoneentrated around the mean. The
effect is quite pronounced even for relatively small values of K. This behavior holds generally
and leads to the conclusion that, when present, the angle hetween LOS paths is the dominant
factor in the performanee of various sehemes.
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Figure 5.11 shows the |A|? distributions for three different LOS paths for correlated chan-
nels. Figure 5.12 shows the corresponding results with the XPD parameter set to v5 = 0.1
rather than 0.3. Note that each row represents a different LOS path and cach column rep-
resents different transmission schemes. 1t is evident that the |A}? distributions for the uni-
polarized and dual-polarized schemes have considerable variability as the relative phascs in
the LOS components vary. However, what stands out is the stability of the |A|? distribution for
the dual-polarized hybrid transmission scheme. The distribution, and hence the performance
of this scheme, is insensitive to the relative phascs of the LOS components of the channel.

We can understand this behavior by considering the angles between the LOS components of
the channels which we denote by Ay os. From (2.33) and (5.20), we have

H'G

ALos (5.39)

el

For the dual-polarized hybrid system

277
Aros| = ; 5989
[Aros| L5 ( )

and for the dual-polarized system we have
[ALos| = {/cos? ¢ + Lz sin? ¢, (5.36)
{1 =17}

where ¢ = Zp.

We immediately note from (5.35), that |Aos| for the dual-polarized hybrid scheme depends
only on -y;. This explains why the dual-polarized hybrid scheme is robust to changes in the
relative path lengths between the two dual polarized transmitters, as observed in Figures 5.11
and 5.12.

We note that for the dual-polarized scheme

2 /75
BN & ] (5.37)
1+y

We have demonstrated that the performance parameter A obtained in Chapter 2 can be used to
analyze and predict the performance of diffcrent transmission schemes involving polarization
diversity and the Alamouti codes. The results show that the performance is dominated by the
“angle” between the component Alamouti channels. In designing transmission schemes that
involve multiplexing Alamouti coded transmissions, one should aim for multiplexing schemes
which kecp the channel volume away from zero (see Section 2.8 on channel volume). This is
the case for the dual-polarized hybrid scheme analysed here, which has a normalised channel
volume dominated by the LOS channel volume

Vies = (1 = 5)%/(1 +vp)2 (5.38)
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Figure 5.8: Performance of three different transwmission schemes over an uncorrelated Rayleigh
channel
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5.7 Polarization-Time System: The Golden Code

In the last section, we investigated the performance of threc different transmission schemes
using Alamouti STBCs across a pair of dual-polarized antennas at the transmitter. The results
indicate that the performance is dominated by the LOS component and that polarization diver-
sity along with an appropriate transmission scheme can provide stahility of performance across
changcs in cnvironmental conditions.

Typical of uni-polarized space-time systems, the performance of the Golden Code degrades
considerably as the LOS component increases due to the loss of diversity. Figure 5.13 shows
the simulated performance of 4-QAM and 16-QAM modulation in various channel conditions
(pure scattering K = 0, Riccan K = 10 and pure LOS A" = oo in uncorrelated channel).
These simulation results show that the performance degrades as the K — factor increases. In
this chapter we consider the effect of LOS on the performance of the Golden Code and intro-
duce a possible remedy with the use of dual-polarized antennas. We analyse the performance
of the Golden Code in terms of angle between the channels corresponding to the two receivers,
which allows us to predict the performance without nccessarily necding to resort to simula-
tions. Analysis and simulation results show that with the introduction of polarization diversity
the performance of the Golden Codc can be made consistently good across both rich scattering
and LOS conditions.

i ADAM K =0
—8— 40AM K=10

Symbol error rate
=

e ACAM K e
107 | —e— 180AMK=0
|| —=— 160AMK=10
16CAM K=
10 . . .
5 10 15 20 25 30
SNR (dB)

Figure 5.13: Performance of the Golden Code for uncorrelated uni-polarized channels from
pure scattering to pure LOS

5.8 The Effect of LOS on the Performance

Codewords in the Golden Code takc the form
a 0 T + 27 T3+ TaT
X = ; 5.39
0 a (w3 + xap) Ty + T2 ( )
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where a = (1 + ig)/V5.a = (1 + ir)/V5 and {x}} | € C C Z[] are transmitted sym-
bols, where C is a signal constellation taken to be 2™ — QAM and m bits per symbol. The
parameters T and y are the real roots of the polynomial 2° — x — 1, that is, the Golden ratio
7 = (1 + v/5)/2 and its algebraic conjugate 1 = —1/7 = (1 — /5)/2. The diagonal matrix
diag(a, a) serves to equalize transmitted signal power across the two transmit antennas.

Letry = (ri1,7m12) and r2 = (r21, r22) be the two received signal veetors at the first and
the second receiver and the ecomponents are the signals received over two consecutive time
slots. For convenience, in what follows we will use the rescaled channel gains, hy; = ahy;
and hz;, = aha; ¢ = (71, r3) and 8 = (2, 14), so the received signals can be written as

r1 = ch+ sh+mn,

_ (5.40)
r2 =¢cg+ 8g+n;
where
} hit ha i hur hap
i ihzl h.|| ’ - ih.zlll h.“T !
(5.41)

hiz ha2 ) hi21 hoap
=il gt ET ihoopt hiat ]’

where I;; is the channel gain from transmit antenna ¢ to the receive antenna j.

Given that the channcl gains are known at the receivers and cach symbol is transmitted
with equal probability, optimal decoding is provided by the maximum a posterior/maximum
likclihood (MAP/ML) estimate as follows. Let v = (ry,72),H = (h,h)" and G = (g, )"
and rcwrite (5.40) as

T=TA+n, (5.42)
where A = (H,G) and * = (c, s). The likelihood function of = given the received signal r
is given by

p(r|z) x exp <—Ely§»(:1: —2)AAN(xz - :i')') (5.43)
where
B el (R (5.44)

Taking the prior distribution of & to be uniform on the constellation C, we obtain the MAP/ML
cstimate:

T = arg max p(r|x). (5.45)
zeCH

The performance of (5.45) in decoding  is determined by the determinant of AA' or equiva-

lently ATA. Sincc
Al (AP G o
=\ o 6L e

IHI2 = (1 + 73| hul? + (1 + ) ka2,
G112 = (1 + 7Y hi2|* + (1 + p°)|h2al?,

where

(5.47)
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we have

det(ATA) = I IGI7 (1 - [A%)? (5.48)
where ;
HiG
= (5.49)
I, 1161,

The parameter A is an inner product of two unit cyclotomic vectors and it represents the differ-
ences (angle) between the channel components H and G. A similar measure to this parameter
which represents the angle between two Alamouti users was given in Section 2.4, [48] and was
used to predict the performance of various Alamouti transmission schemes involving dual-
polarized antennas (sce [40] for details). Good performanee corresponds to small values of
|A|? and viee versa.

Consider the capacity of the equivalent channel matrix A which is given by [9],

C(A) %E [Iog (det (14 + 4[ZZATA))]
2 2
K,
IOgH (1 + Z?Pl) j|

where E, is an average transmitted signal power and e, are eigenvalues of AT A with multi-
plicity 2 and are

M2 G112 [ \/ 4||1H|2 612
e =# 1+ 1_#(1_“'2) ] (5.51)
’ 2 1M1 + IG112

(5.50)

1
-F
2

This implies that the capacity of the channel depends on the parameter A. If |A|> = 0 then we
have
ey =[IH|? and ez =|G|1° (5.52)

7 E. .
Zomie) (1v Z192))|. o

If |A|? = 1 then the channcl is rank deficient, that is

and the corresponding capaeity

Ciaz o(A) =2E [log ((1 +

er = |H|I2+||GI> and ez =0, (5.54)
and the corresponding capacity is

Eq

Cap=1(A) = 2E [Iog (1 g (1712 + ||g||3))} . (5.55)

Consider the case of a pure scattering channel, i.e. K = 0, then the values of | A|? is uniformly
distributed between [0, 1] and can be explicitly written as

: h.§)-?
M=o = M’; (5.56)

I ¢

. g
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Figure 5.14: Distribution of |\|? for uncorrelated uni-polarized channels

where

(h@)r = (1 + TR haz + (1 4+ p®)h3 Bz,

||g”2 = (1 + )2l + (1 + g2 hael.

2 = o
= (1+ ) Al + (0 + p?)ha?, (5.57)

It is also clLar from (5.56) that in the pure scattering environment, the channel becomes rank
deficient, i.e. [M%k_o = 1, only if hyjhay = hoyhys or equivalently det(H) = 0. As K
increases H dommatcs the behaviour of the system and when K = oo, which corresponds to
pure LOS channels, wc have

1 (,i'rr cos B4 et cos on Pi'rr(cos Gy —cosfy)
N i(,zﬂco‘-()-r i B ietﬂ(coﬁo'['-cﬂﬂolf) (‘-iwcoseR
H= T “eurrnse-r ] g . et cos B ueiw(cose-r—cosek)
iuPlﬂcos()-,- r iuenr(('ose»l--(‘osel.g) Te—i'rrroseu
Substituting these values into (2.33), we obtain
(B
[Alros = 1, (5.58)

i.e. the channel is rank-dcficicnt hence resulting in the performance dcgradation.

Figure 5.13 shows the results of simulatcd performanec of the Golden Code with 4-QAM
and 16-QAM modulation in various channel conditions (pure seattering (K = 0), Ricean
(K = 10) and pure LOS (K = 00) in uncorrelated channels). Figure 5.14 shows the empirical
distribution of [A|? for K = 0,10 and 100. Clearly, as the K -factor increascs the mean of
the distribution of |A|? shifts toward |A|[?> = 1. Thus, as expected, the distribution of | A2
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indicates that the perlormance degrades as K inereases. The distribution of |A|® agrees with
the simulation results.

5.9 Golden Code and Polarization Diversity

Consider Golden Code signaling using one dual-polarized transmit and one dual-polarized
receive antenna. Based on the channel model given by Nabar et al.[58] as deseribed in Sec-
tion 5.5, the LOS component can be explicitly written as

1 vir 1
— Wyl = Y C7]
H= s il GRS y (5.59)
TV VL
e T NG TE

Substituting this into (5.34), we find

(2+ 72+ 1*)yy
[(L+ 72) (0 + 0] (L +ray (T 452

|)\|ios o= (5.60)

1f v, < 1, then |[A|Zps < 1. As (5.60) shows, the antenna’s cross-polarization diserim-
ination () will determine the mean performance of the system. For a pure LOS condition,
the performance depends solely on the antenna’s ability to separate the orthogonal polariza-
tion. Therefore as the K — factor increases the effect of polarization diversity is to reduee the
probability that the channel will be rank-deficient, thus resulting in a diversity gain.

We can prediet the performance of the Golden Code in the presenee of polarization diversity
based on the distribution of the parameter |)\|2. Figure 5.15 shows the distribution of |A|? for
K = 0,10, 100 when dual-polarized antennas are used. Compared to the case of uni-polarized
antennas in Figure 5.14, the mean of the [A|? for K > 0 is now shified away from the value 1.
The simulation results in Figure 5.16 demonstrate the benefit of dual-polarized antennas in the
high K environments as predicted in Figure 5.15. Note that for pure LOS eonditions (K = o0)
the channel is fixed, therefore the probability of error decays exponentially with SNR and so
no diversity order can be defined.

Figure 5.17 shows the distribution of |A|? in a correlated environment, with t = 0.5, =
0.3. We can sec from the distribution that for a pure Rayleigh channel (K = 0), |A|? is no
longer uniformly distributed but biased toward 1. Henee the performanee will degrade eom-
pared to an un-correlated environment. Figure 5.18 demonstrates that, for K > 0, the better the
separation of orthogonal polarization (smaller ;). the better the improvement in performance.

5.10 Summary

We investigated the performance of three different transmission schemes for using Alamouti
STBCs across a pair of spatially separated dual-polarized transmit antennas. The results indi-
cate that the performance is dominated by the LOS eomponent and that polarization diversity
along with an appropriate transmission scheme can provide stability of performance across
changes in environmental conditions. We went on to investigate the performance of the Golden
Code using polarization in various environmental conditions from rich seattering to pure line
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of sight. OQur analysis leads to a performance parameter which represents the angle between the
channels to the two receivers and can be used to predict performance. We have analysed how
the performance of the Golden Code degrades as the environmental K -factor increases. When
the Golden Code is used to code across orthogonal polarizations of a dual-polarized transmit
antenna, rather than across spatially separated antennas, we have shown that polarization di-
versity can lead to consistently good performance across environmental conditions from rich
scattering to pure line of sight. The simulation results agree with our analysis. We note that
the approach is not restricted to the Golden Code but can be applied to most STBCs.
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Figure 5.15: Distribution of |\|* for uncorrelated channels with polarized antennas, ~v; = 0.4
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Chapter 6: Fully Polarimetric MIMO

In the previous chapter we investigated the performance of a MIMO system using the Golden
Code with a dual-polarized antenna system and found that the performance can be made con-
sistently good across cnvironmental conditions from rich scattering to purc LOS. However, we
assumed that the planes of the dual polarized transmit and receive antennas remained aligned.
The simulation results for dual-polarized systcms show that the performance degrades consid-
crably if we allowed three dimensional (3-D) rotation of the transmit and/or receive antennas.

If we are to profitably use the performance stability introduced by polarimetric antennas for
mobile terminals then we need to address the stahility in transmission and/or reception under
the 3-D rotation of the antennas in the MIMO system. To this end we investigate the use of
triad antenna at the transmitter and receiver. A triad is composcd of three orthogonal dipoles
oriented along orthogonal dircetions as described in Section 5.2, We derive the channel model
and show that thc capacity is invariant under arbitrary rotation of the transmitter and/or receiver,
since the channel matrix is always a 3 x 3 matrix of rank 2. We propose a 3 x 3 STBC suitable
for this system which achieves full-rate and furthermore has a fast decoding algorithm. We
give the simulation results for the performance of the triad system using the proposcd 3 x 3
STBC with and without antenna rotation. We then compare the results with a dual-polarized
system transmitting Golden Code codewords.

6.1 System Channel Models

Consider a MIMO wircless communication system with three transmit and three receive an-
tcnnas. We assume a quasi-static fading channcl, represented by a 3 x 3 matrix H with entries
which are complex Gaussian random variables. For each symbol interval, p = (pl,pz,p-g)T
denotes a vector of transmitted complcx symhols. The received signal vector y = (1, y2,y3)’
can be expressed as

vy =Hp+ w, 6.1)
where w denotes complex Gaussian noisc with covariance E{ww'} = ¢ I5.

The channel matrix H can be wriugn as the sum of an average (LOS) component Handa
variable Rayleigh fading component H,

K = 1 1/25% pl/2
H = l+[\,H+\/;+[\,-R,‘ HR,'", 6.2)
where E{H} = \/K/(1+ K) H is thc channel mean. H is a complex Gaussian random
matrix with independent zero-mean and unit variance entries, i.e. h,, € CN(0.1). H and
H are weighted hy the Ricean K'-factor. Note that A = 0 corresponds to the case of pure
Rayleigh channel. As K increases, H dominates the hchavior of the system and K = oo
corresponds to a pure LOS channel. R, = R:/QR:/” and R, = RY*R}*" arc the transmit
and receive corrclation matrices respectively.

Consider a system with a triad antenna at both the transmitter and reeeiver. A triad is com-
posed of three orthogonal dipoles oricnted along Euclidean directions ey, e2, and e3 as shown
in Figure 5.1. At the transmitter a triad antenna can generalce an arbitrary dipole moment p.
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As shown in Section 5.2 the far field electric field generated by the triad is

Stk
E = 1;2‘7(13 —nn')p. (6.3)

The term /3 — nn' is a 3 x 3 projection matrix with rank 2 and it constrains the oscilla-
tion direction of the clectric field to be perpendicular to its propagation direction as shown in
Figure 5.2. In spherical coordinates, the propagation dircetion can be represented as

sinfl cos ¢

n = | sinfsing | (6.4)
cos @

where 0 < 0 < 7,0 < ¢ < 27. The use of triad antcnnas allows us to think of this MIMO
system in an unusual way. Instcad of thinking of the individual component antennas and the
symbols coded onto them at the transmitter and read off at the receiver, we can think direetly
of coding onto a physical dipole moment vector at the transmitter and measuring the resulting
clectric field at the receiver with the LOS channel given by the matrix

szr

Hi= kQ—T—(I;; —nn'). (6.5)

It is difficult to build co-located antennas without having somc form of mutual coupling. To
model this coupling between the thrce components of the triad antenna we introduce mixing
operators M, for the transmitter and M., for the receiver so that the LOS channel bccomes
MIHM,. The mixing operators M; and M, are defined as

1 pi2 pi3
1
Mi=M,=—|mz2 | pa|, (6.6)
’ VN
P13 paz 1

where 0 < p,;; < 1is a coupling between components 7 and j and is direetly related to the

cross coupling between the antenna elements comprising the triad, and N is a normalisation
term given by

N = max(1 + plz + p3s, 1+ pla + pha, 1 + pis + pla). 6.7)

Assuming that the receiver is at position rn relative to the transmitter and denoting the three
orthogonal axes of the triad transmitter and receiver (initially assumed to be aligned) by ey,
€3, e, the LOS component H then consists of elements given by

(H);; = elMe;. 4,5=1,2.3. (6.8)

The elements of H dcpend on the propagation conditions and the antenna charactcristics and
satisfy [58],

l;{ B@ilz} = ], and
n 23 2 (6.9)
E{lh;1%} = E{lh;l°y =, 45=1,2,3,
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wherc 0 < 4 < 1 describes attenuated cross eoupling for polarization multiplexing. In a rich
scattering environment <y tends 10 be close to | (for ranges beyond 1.6 km, v is always close
to 1) [58]. Here we assume that 4 = 1, i.e. the scattering changes the polarization states
randomly, henee in a pure seattering environment, a polarimetrie antenna system is equivalent
to a uni-polarized antenna system. The correlation matrices R, and R, are modelled as

Re=|t1t], R =|r1lr (6.10)

where ¢ and r arc transmit and reeeive eorrelation eoefficients respeetively.

For a dual-polarized antenna consisting of co-locatcd vertically and horizontally polarized
antcnnas, consider a system with one dual-polarized transmit and one dual-polarized reccive
antenna. The LOS channel matrix Hy is given by

H; = P'HP, (6.11)
100

where = | 0 1 0| and H is as defined in (6.5). Similarly, Hy is modelled as described for
000

triad antennas and the correlation matrices are defined as

1 ¢ . 7
coh TR Rl PP

6.2 The Effect of Antenna Rotation

Consider the casc of pure LOS (K = o0). If the ehanncl is known at the receiver, then the
capacity is given by [2]

C(H) = Fnu [log2 det (13 + ip H ﬁ*)] . (6.12)

3a2
where F/, is the average transmitted signal power. From (6.5) and (6.8) it follows that ﬁﬁf is
a 3 x 3 rank 2 matrix with equal eigenvalues, and so the eapaeity (6.12) can be writien as

C(H) = En [2 log,(1 + %/\)] , (6.13)

where A is the eigenvalue of HH' |

Assume that the transmit and receive triad antennas have been rotated or cquivalently. the
transmitted and receive signals have been rotated. The rotated signal ean be represented as

p' = Rp = pyRe, + paRes + psRes. B

y' = Sy = y1Se; + y2Ses + y2Ses, ’

where S and R are 3 x 3 real orthogonal rotation matrices. The elements of the eorresponding
. ==t
channel matrix H become

(H'),, = e!StHRe,, i,j=1223. 6.15)
J 7 ]
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Since S and R are orthogonal, STH R has the same singular values as H. i.e. H isstilla3x 3
rank 2 matrix, thercfore the eapaeity is invariant under the rotation of the transmit and reeeive
antennas,

C(H') = C(H). (6.16)

This is not the ease when dual-polarized antennas are employed at the transmitter and re-
ceiver. In that ease the ehange in orientation (3-D rotation) of the dual-polarized transmit and
reecive antennas will not preserve the capacity of the rotated ehannels. Morcover, a transmitter

or reeeiver can be rotated such that the ehannel matrix beeomes rank deficient (in fact, rank 1).
For examplc, consider a rotatcd channel matrix,

el StHRe, el S'HRe2
el S'HRe, elS'HRe,

—

H; = 6.17)

If a dual-polarized reecive antenna is rotated such that one of the branches is parallel to the
direction of propagation n, i.e.

Se; =n, and Se; = ey, (6.18)

a e n'He, n'He,
H, = : 6.19
¢ e;'Hel etz'Hez Lo
Substituting (6.18) into (6.8), we obtain n'H = 0, and we have a rank 1 channcl matrix ﬁ;.

However, if the dual-polarized rcceive antenna is rotated in a plane, then the capacity is
invariant undcr rotation [63]. That is, under a rotation of the reccive antenna, (6.11) becomes

then (6.17) becomcs

H, = P'S'HP. (6.20)

If PS = SP (ie. P and S commute), then the capacity is invariant under the rotations, and
we obtain,
H, = stH,. (6.21)

Note that P and S commute if and only if S fixes the plane defined by P, i.e. if S is a rotation
around the normal to the plane defined by .

The above analysis shows that in a LOS environment, a system with a triad antenna at both
ends of the link can provide robustness (prescrve capacity) to any oricntation of the transmit
and/or reeeive antennas, which is not the case for dual-polarized antennas. We will see that
this robustness extends to the hybrid LOS and rich scattering environments described by (6.2).

6.3 The Full Rate STBC for a Triad Antenna

In this section we introduce a STBC which, in LOS environments, provides full-rate for the
triad antcnna system diseussed above. We emphasize that, although our system eonsists of one
physieal transmit and one physical receive antenna, thc underlying channcl has threc-inputs and
three-outputs. The proposed code is a 3 x 3 STBC which transmits six eomplex information
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symbols {z,}_,, 2, € Z[i] over threc time slots from three effective transmit antennas. The
codewords can be expressed as

Ty T2 T3 T4 I5 T

X=B,|Jjzs x1 2 |+ By| Jre Ta 75 | | (6.22)

JT23T3T JT5]T6Ta
where the diagonal matrices B; are

By =(14+3)3+ 9,
By = (-1 - 2j)fs + jO°,

with © = diag(01,02,05),0, = 2cos(2'7/7),j = €™*/3 This is a sub-code of the 3 x 3
perfect STBC introduced by Oggicr et al. [7] which transmits ninc complex information sym-
bols over three time slots from three transmit antennas. However, this sub-code still provides
rate 2 and can be decoded with essentially maximum likelihood performance using an algo-
rithm introduccd in [47] with complexity O(N?), where N is the size of the underlying signal
constellation.

6.4 Simulation Results

We simulated the performance of the triad and dual-polarized antenna systems allowing rc-
ceiver rotation. The simulation included pure LOS (K = oc), Ricean (K = 10) and Rayleigh
(K = 0) channcls. Thc systcm was initialized so that the polarization of the rcceiver and the
transmittcr werc aligned, i.e. we set n = es. The recciver was then suhject to a random ro-
tation drawn from the uniform distribution. The counterclockwisc rotation ahout an arhitrary
unit vector (v, v2, v3), hy an arbitrary angle a, is given hy

vi+ (1 —vi)e viva(l = ¢) —vis vivs(l = ¢) + vas
S = | viva(l — ¢) + v3s v3 + (1 —v3)c vava(l —¢) —uys

viva(l —¢) —v2s vv3(l —¢) + vy v+ (1 —vd)e

where ¢ = cosa and s = sina. We assume the mutual coupling between the three elements
is the same both at the transmitter and the receiver. That is the mixing operators are choscn as
follows:
Lpop
1
M=M,=———|p1lop

V14 2p2
g ppl

For a triad antenna system, the transmit codewords arc the 3 x 3 STBC given in (6.22) and
the information symbols are taken from a 16-QAM constellation. As shown in Figure 6.1, the
performance of the system is stable under the rotation of the receiver across LOS, Riccan and
pure scattering conditions. The Golden Codc [22] with information symbols taken from the
16-QAM constellation provides a baseline for evaluating coded dual-polarized system perfor-
mancc. The performance degradation under 3-D rotation shown in Figure 6.2 is consistent with
the analysis given in Section 6.2,
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Figure 6.1: Performance of the triad system with and without receiver rotation for uncorrelated
channels, p = 0.3
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Figure 6.2: Performance of the dual-polarized system with and without receiver rotation for
uncorrelated chanaels, p = 0.3
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Figure 6.3: Performance of the triad system with and withount receiver rotation for correlated
channels, t = r =0.5and p = 0.3

Symbol error rate
3
TELLd L

{0 Fixed Tx&Ax,Kane
@ Fixed Tx8Ax.K=10
107 A Fixed Tx8RxKe0
E —+— FRotate Ax.Kex -3
; —w— Aotate Ax K=10
} —+— Rotale Rx,K=0 A
10t e r S 5

5 10 15 20 s 30
SNR(JB)

Figure 6.4: Performance of the dual-polarized system with and without receiver rotation for
correlated channels, t = r = 0.5 and p = 0.3

Figures 6.3 and 6.4 show the performance of triad and dual-polarized systems respectively,
in a correlated environment, with t = » = 0.5 and p = 0.3. In this case, the performance of
the triad system is not only robust to the rotation of the antenna but is also robust to the prop-
agation environment. In comparison, the dual-polarized system loses robustness to changing
propagation cnvironments,
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Figure 6.5: Performance of the triad system with and without receiver rotation in correlated
channels,t = r = 0.6and p=10.1
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Figure 6.6: Performauce of the dual-polarized system with aud without receiver rotation in
correlated channels, t = v = 0.6 and p = 0.1

If the polarimetric antennas have good eross polarization diserimination (XPD) (small value
of p), even in highly correlated channels as shown in Figure 6.5 and Figure 6.6, where t = r =
0.6 and p = 0.1, the triad system is still robust across all conditions, while the performanee of
the dual-polarized system degrades severely under rotation of the antenna.
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As shown in the simulation results, the use of triad antenna at the transmitter and the reeeiver
ean provide resilienee to arbitrary rotations of the transmit and receive antennas as well as
stahility in performance across propagation conditions. In the next section we consider the
multi-user downlink where both the base station and each user is equipped with a triad antenna.

6.5 Fully Polarimetric Multi-user Downlink

In this seetion we investigate multi-user deteetion on a fully polarimetrie downlink. In partieu-
lar, we investigate a system which uses a Code Division Multiple Aeeess (CDMA) transmitting
scheme in which each user is assigned a two dimensional suhspace and the transmitted infor-
mation symbol for each uscr is coded across this subspace. The rcceived signal for each user
after despreading is equivalent to the deeoding problem of a single user with a spaee-time bloek
code system. We demonstrate that the transmittcd information symbols can he chosen to have
the strueture of a STBC with full rate, full diversity and low complexity deeoding.

6.5.1 Multi-user Downlink Model

Consider the downlink of an A user MIMO multi-user system where the base station is
equipped with a triad transmit antenna and each user has a triad receive antenna. We eonsider
CDMA as the multiplexing scheme, i.e. eaeh user is assigned a three dimensional subspaee of
C7 . that is, a matrix A., € C3*7 such that

AnAl = 6p0ds, £=1,..., M. (6.23)

In order to makc this work for M users we must have 1" > 3MA/.
Let S, be an information symbol matrix for user m with elements being s,,7 = 1....9,
where s, € C,
81 S2 83

Sim= | $4 85 Se | . (6.24)

87 S8 89

In a pure seattering environment, in the case that H = H is a full rank ehannel matrix,
this provides 3 timcs the rate that eould be achieved using single-transmit and single reeeive
antennas [64, 65). However in a LOS environment, H = H as described in (6.5) for a fully
polarimetrie antcnna systems, is a rank 2 channel matrix, and the rate is only twiee that of a
single antenna system.

The signal transmitted from the triad at the base station is

M
X = Z Bl 2 G (6.25)

m=]

’ . . g
We ean write the spreading matrix of the #** user A, as (a8 ,ab  ab )l where a sequenee

al e C"7and a,’faf1 = 4,5, then the transmitted signal (6.25) can be rewritten as

sTal* + s5'al + s5'al
m m m m
Xi= E siay’ +ss'ay’ +sg'ag’ |, (6.26)

m=1 m m i m

s7ay" +sg'ay’ + sy'al
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At each transmittcr clement, the transmitted signal is an element of the subspace of C**7
assigned to the m™ user. Therefore, the transmitted signal for the scheme is cquivalent to that
of spatial multiplexing over three timc slots, that is, the numbcr of time slots corresponds o
the dimension of the subspace allocated to the user.

We note that Doostnejad et al., [66] study a space-time multiplexing structurc for MIMO
downlink channcls in which they modulated the information symhols by a two dimensional
sprcading matrix which is reminiscent of the class of linear dispersion codcs discussed in [18].

Assuming that perfect CSl is known at the recciver of cach user, the received signal of the
£ user is

Y.=H:.X+W,

MM
= Y HSmAn+W,

m=1,m#{

(6.27)

where W is the complex Gaussian noisc matrix with entries, W,, € CN(0,02) and H, €
€**3 is the channel matrix of the £™ user.
Multiplying (6.27) by A, the ¢ reccived signal is despread,

Yo = YeA) = HiSe + ny, (6.28)

wherc the noise ny = WA; is the projection of the noise onto the user’s subspace and is still
white. Equation (6.28) shows that, after despreading, thc decoding problem of cach user is
cquivalent to that of a single uscr with STBC even though the two dimensions are polarization
and the sprecading suhspace components, rather than spacc and time. This suggests that choos-
ing the structure of the information symbol matrix S is equivalent to choosing an STBC. In the
following scctions, we consider a suitable choicce for hoth the sprcading matrix and the symbol
matriccs which are compatible with the triad structure and admit a fast decoding algorithm.

6.5.2 Symbols Matrix for Multi-user with Triad System

As shown in Section 6.5.1, the decoding prohlem at the receiver for each user after desprcading
is equivalent to that of decoding for a singlc user who is using an STBC. For the casc of a single
uscr systcm with triad transmit and rcceive antcnnas we have previously proposcd the use of
a polarization-time code (67]. This code has full ratc (under LOS conditions), full diversity
and is fast decodahle. 1t is a sub-code of the 3 x 3 perfect STBC introduced by Oggier et al.
[7]. The proposed code transmits six complex information symhols {;}%_, (usually N-HEX
constellation) where x, is an Eiscnstcin integer, x; € {a + wbla,b € Z,w = ¢*™/3} over
threc time slots from three eftective transmit antennas. The symbols matrix for this code has
the following structure

83i+1 $3:42 S314+3
1
Si= Z Biy1 | WS3:43 S3:41 S3it2 |, (6.29)
20 WS3; 42 WS3i43 S3i+1
where the diagonal matrices B, arc
By =(1+w)lz+6,
By = (=1 — 2w) I3 + wO?,
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with © = diag(6,, 62, 04).0; = 2cos(2'nw/7),w = (i

For each user, the despread procedure reduces the problem to an equivalent dccoding prob-
lem of a single user with STBC. As shown in [{67] this code (6.29) provides rate 2 across
environmental conditions ranging from pure scattering to pure LOS cnvironment, as wcll as
resilience to arbitrary rotations of the transmit and receive antennas. The code can be decoded
with esscntially maximum likelihood pcrformance using an algorithm introduced in [47] with
complexity O(N?).

6.5.3 Decoding

As wc have seen the signal reeeived by the €1 user after despreading has the form

y=HS+n, (6.30)
which can be rewritten as
Y= (¥, Y2 ¥3) = (s1.52,83)H1 + (54. 55, 56)H2 + n, (6.31)
where y, = (i1, ya2, yi3) and
Hi = (H1,6G1,C1), M2 = (H2,G2,C2), (6.32)

whcre
birthit  biohar bishay

H, = | wbishz1 bahn bizha || (6.33)

wbighay whizhar bk

and similarly for G, and C; for the second and third rcceive antenna respectively. Let ¢ =
(s1,52,53) and d = (s4, $5, 5¢). We can write (6.31) as

y=cH, +dH; + n. (6.34)

The likelihood function associatcd with (6.34) is

Il
plyle, d) x exp (_ﬁ ly —eH,y — de"z) . (6.35)

Based on the conditional optimization described in [46], the decoding algorithm can be sum-
marized as follows:

If det(HoML) > det(H, M)

= argcmin ”y -cH, - &(C)H2|‘2 :
d = Q(d(¢)).
othcrwise,
d= arg;nin ly — e(dyH1 — dH.|?, (6.36)
e = Q(e(a)),
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where

d(c) = (y — cH)HLH2HY) ™, (6.37)
é(d) = (y — dH)H (MR (6.38)

Here Q(c) = (Q(c1), -+, Q(c3)), where Q is the quantizer for the HEX constellation.

6.5.4 Spreading Matrix of Length 3™

Finally, we need appropriate spreading sequences for this triad based multi-user scheme. As
such we would like to have spreading sequences with a length which is a power of three,
rather than the usual power of two. Fortunately, spreading sequences of length 3™, which are
analogous to the Walsh-Hadamard sequences, can be constructed as follows (See, for example
[68]).

Begin with the Z3* consisting of m-tuples of elements from Zs, i.c. the integers modulo 3.
For each b € Z7*, we construct a function on Z3" with value at @ € Z7 given by

fo(a) =u®* (6.39)

forall @ € Z3', where w = exp(27i/3) is a cube root of unity and - denotes the usual dot
product on Z'. The functions f, take values in the sct {1, w,w?}. This set of functions is
orthogonal, i.e.

> frl@)fu(a)
aE'Z;:’
= z 1 (B=bE (6.40)

agLy

= 3m 5,,_,,: .

(fbtfb')

Choosing an ordering for the elements of Z;' we can write these functions as sequences and
stack them in a matrix. For example for m = 2, we obtain a 9 x 9 orthogonal matrix as follows

1 Al 1 1 1 1 1 1 )l
1w w? o w YL &, B
I ju® w) 1 @ s 1 o2
11 1 W oW o wi W @l
iy = 1 &% 6 W% 1wt a w (64[)
1 w? ow w 1 w? Wt oW 1
11 1 &2 w2 P woow
1w, w2 wi U owr @ik
L aw® & w2 1 w s w?
In general /1,,, is unitary, i.e.
Hilll, = 0, = 8%, (6.42)

The sprecading matrices Ax for our scheme, for a maximum of 3" users, consist of sets of
mutually exclusive rows from the matrix /1, 1.
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6.5.5 Inhomogeneous Multi-user Downlink MIMO

The MIMO CDMA scheme deseribed in the previous seetion can be generalized to the inho-
mogeneous MIMO downlink where the base station is equipped with 72 transmit antennas but
each user can be equipped with a different number of receive antennas. Note that the base
station is equipped with a fixed number of transmit antennas no matter how many users there
are. Hong et al [69] proposed a scheme which allows different number of receive antennas,
however, the base station requires the number of transmit antennas to be the sum of all users’
reeeive antennas in order to support sueh a capability.

We give an example of two transmit antennas, uni-polarized (vertically or horizontally po-
larized), spatially separated at the base station and each user can be equipped with either one or
two receive antennas. The code structure for the user is chosen to be the strueture of Alamouti
signaling [14] or the 2 x 2 full rate, full diversity algebraic STBC such as the Golden Code
[22], Silver code [27] etc. or even just spatial multiplexing. Let us use the Golden Code for the
dual antenna users.

The user with a single receive antenna, Alamouti scheme is chosen,

81 S2
5= ( _ ) | 64
—83 §;

For the users with two reeeive antennas, the Golden Code structure is chosen,

(0(31 +782) a(sz + TS4))

S= (6.44)

ia(s3 + puss) al(sy + ps2)

where a = (1 + ip)/V5. a = (1 +i1)/V5, 7 = (1 + V5)/2and u = (1 - V/3)/2.

For M users, the spreading matrix for each user is a two dimensional subspace matnix, i.e.
A € C**T where T' = 2M is the length of the sequence. The transmitted signal at the base
station is given by

syral® + sytay’
> W . 45
Z (97710771 + g4a (64 )

If the " user has a singlc antenna then their received signal is given by

s1a1 + sa2az M
= (hn, h: + (hyy, h SnAn +n, 6.46
(h11, ha1) o (hn 21)," ;,,#/ i (6.46)

where y is the 1 x T received signal vector. After despreading, this becomes

’ Ss1 82
y = (hn. ha) = +n, (6.47)

$2 81

where ¥’ = y(ai,az2)' and n’ = n(a;,az)’. Equation (6.47) is the well known Alamouti
decoding problem.
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Similarly, if the £** user is equipped with 2 receive antennas, after despreading the decoding
problem becomes

’

Yy

y(ai, a2)'
hit ha a(s) +7s2) alss + Ts4) ) (6.48)
: +n,
hiz haa | \ia(ss + psa) a(sy + psz)
where y is the 2 x 1" received vector. This is the decoding problem of the Golden Code for a

single user which can be decoded with an cssentially ML decoder with quadratic complexity
given in [46].

6.6 Summary

We havc quantified thc performance gains that result from the introduction of a triad antenna
at both the transmitter and recciver in a MIMO communication system. We have shown that,
in a LOS cnvironment, the capacity of the channel is invariant to the rotation of the transmitter
and/or receiver. Simulation results show that system performance is stable across a full range
of propagation environments from LOS to pure Rayleigh scattcring. An advantage of the triad
systcm over the baseline provided by dual-polarization was shown to be a resilicnce to arbitrary
rotations of the transmit and receive antennas. The practicality of coded transmission for the
triad system was shown through design of a full rate 3 x 3 STBC that provides full rate in LOS
conditions and admits low-complexity decoding.

We have extended the triad system to a multi-user scenario in which we considcred a CDMA
transmitting scheme for the multi-user downlink in a systcm wherc both the basc station and
cach user is equipped with a triad antenna. The information symbols for cach user arc sprcad
over their assigned sprcading matrix of orthogonal sequences. Thc received signal for each
user after despreading is cquivalent to the decoding problem of a single user using a 3 x 3
STBC. This allows the information symbols for each user to be coded on an STBC which
achieves full-rate, full-divcrsity and has a fast decoding algorithm.
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